ShanghaiTech University Knowledge Management System
MIPS: Instance Placement for Stream Processing Systems based on Monte Carlo Tree Search | |
2019 | |
会议录名称 | ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC)
![]() |
ISSN | 1550-3607 |
卷号 | 2019-May |
发表状态 | 已发表 |
DOI | 10.1109/ICC.2019.8761074 |
摘要 | For up-to-date data stream processing systems, e.g., Apache Heron, the distribution of processing units, a.k.a. instance placement, is determined in two stages, i.e., first mapping instances to containers and then mapping containers to servers. The placement, if improperly decided, can induce considerable traffic across servers and inefficient resource allocation. However, it is an open problem to decide the placement effectively, due to the complex interaction among instances, dependency between the decision making in two stages, and the trade-off between traffic reduction and resource utilization improvement. In this paper, we formulate such a problem as two sequential decision making problems. By adopting Monte Carlo Tree Search (MCTS) methods, we propose MIPS, i.e., a MCTS-based Instance Placement Scheme that decides the two-stage placement in a unified manner, achieving a well balance between computational efficiency and optimality. Results from simulations show that, with mild-value of samples, MIPS surpasses baseline schemes with significant improvement in both traffic reduction and utilization. To our best knowledge, this paper is the first to study and solve the two-staged mapping problem in such systems based on Heron. |
会议地点 | Shanghai, China |
会议日期 | 20-24 May 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S ; CPCI |
语种 | 英语 |
WOS记录号 | WOS:000492038800028 |
出版者 | IEEE |
EI入藏号 | 20193207291128 |
原始文献类型 | Proceedings Paper |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/49990 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_邵子瑜组 信息科学与技术学院_PI研究组_杨旸组 信息科学与技术学院_博士生 科道书院 |
通讯作者 | Huang, Xi; Shao, Ziyu |
作者单位 | School of Information Science and Technology, ShanghaiTech University, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Huang, Xi,Shao, Ziyu,Yang, Yang. MIPS: Instance Placement for Stream Processing Systems based on Monte Carlo Tree Search[C]:IEEE,2019. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Huang, Xi]的文章 |
[Shao, Ziyu]的文章 |
[Yang, Yang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Huang, Xi]的文章 |
[Shao, Ziyu]的文章 |
[Yang, Yang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Huang, Xi]的文章 |
[Shao, Ziyu]的文章 |
[Yang, Yang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。