ShanghaiTech University Knowledge Management System
TableCall: Boosting Table Question Answering with Tool-Driven Training-Free LLMs | |
2025 | |
会议录名称 | 19TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, ICDAR 2025 |
发表状态 | 已投递待接收 |
摘要 | Large language models (LLMs) have exhibited strong semantic understanding capabilities in interpreting and reasoning for table question answering (TQA). However, they still face challenges with excessively long or complex input tables, particularly when these tables are disorganized or have hierarchical structures. To address these challenges, we propose a new paradigm for TQA, named TableCall, which leverages the tool-using capabilities of LLMs. Specifically, TableCall invokes different tools for different types of table questions, such as SQL, Python, and LLMs, to simplify and enhance the reliability of table understanding. Moreover, to further enhance LLM’s table comprehension capabilities, a few-shot library updating technique is proposed to generate better QA pairs for LLM prompting. Experimental results on both open-domain and specific-domain datasets demonstrate that our approach achieves state-of-the-art performance, outperforming previous methods in terms of accuracy, efficiency, and reliability. |
关键词 | Large Language Models Table Question Answering Few- shot Question Answering |
会议名称 | 19th International Conference on Document Analysis and Recognition, ICDAR 2025 |
会议地点 | wuhan, China |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/496996 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院 |
通讯作者 | Cheng-Lin Liu |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201203, China 2.Hundsun Technologies Inc., Hundsun Center, 1888, Binxing Road, Binjiang Dist., Hangzhou, China 3.State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation of Chinese Academy of Sciences, Beijing 100190, P.R. China 4.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chun-Bo Xu,Yi-Ming Chen,Xiao-Hui Li,et al. TableCall: Boosting Table Question Answering with Tool-Driven Training-Free LLMs[C],2025. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。