TableCall: Boosting Table Question Answering with Tool-Driven Training-Free LLMs
2025
会议录名称19TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, ICDAR 2025
发表状态已投递待接收
摘要

Large language models (LLMs) have exhibited strong semantic understanding capabilities in interpreting and reasoning for table question answering (TQA). However, they still face challenges with excessively long or complex input tables, particularly when these tables are disorganized or have hierarchical structures. To address these challenges, we propose a new paradigm for TQA, named TableCall, which leverages the tool-using capabilities of LLMs. Specifically, TableCall invokes different tools for different types of table questions, such as SQL, Python, and LLMs, to simplify and enhance the reliability of table understanding. Moreover, to further enhance LLM’s table comprehension capabilities, a few-shot library updating technique is proposed to generate better QA pairs for LLM prompting. Experimental results on both open-domain and specific-domain datasets demonstrate that our approach achieves state-of-the-art performance, outperforming previous methods in terms of accuracy, efficiency, and reliability.

关键词Large Language Models Table Question Answering Few- shot Question Answering
会议名称19th International Conference on Document Analysis and Recognition, ICDAR 2025
会议地点wuhan, China
收录类别EI ; CPCI-S
语种英语
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/496996
专题信息科学与技术学院_硕士生
信息科学与技术学院
通讯作者Cheng-Lin Liu
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201203, China
2.Hundsun Technologies Inc., Hundsun Center, 1888, Binxing Road, Binjiang Dist., Hangzhou, China
3.State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation of Chinese Academy of Sciences, Beijing 100190, P.R. China
4.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Chun-Bo Xu,Yi-Ming Chen,Xiao-Hui Li,et al. TableCall: Boosting Table Question Answering with Tool-Driven Training-Free LLMs[C],2025.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chun-Bo Xu]的文章
[Yi-Ming Chen]的文章
[Xiao-Hui Li]的文章
百度学术
百度学术中相似的文章
[Chun-Bo Xu]的文章
[Yi-Ming Chen]的文章
[Xiao-Hui Li]的文章
必应学术
必应学术中相似的文章
[Chun-Bo Xu]的文章
[Yi-Ming Chen]的文章
[Xiao-Hui Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。