Structured Turbo Compressed Sensing for Downlink Massive MIMO-OFDM Channel Estimation
2019-08
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
ISSN1536-1276
卷号18期号:8页码:3813-3826
发表状态已发表
DOI10.1109/TWC.2019.2917905
摘要

Compressed sensing has been employed to reduce the pilot overhead for channel estimation in wireless communication systems. Particularly, structured turbo compressed sensing (STCS) provides a generic framework for structured sparse signal recovery with reduced computational complexity and storage requirement. In this paper, we consider the problem of massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) channel estimation in a frequency division duplexing (FDD) downlink system. By exploiting the structured sparsity in the angle-frequency domain (AFD) and angle-delay domain (ADD) of the massive MIMO-OFDM channel, we represent the channel by using AFD and ADD probability models and design message-passing-based channel estimators under the STCS framework. Several STCS-based algorithms are proposed for massive MIMO-OFDM channel estimation by exploiting the structured sparsity. We show that, compared with other existing algorithms, the proposed algorithms have a much faster convergence speed and achieve competitive error performance under a wide range of simulation settings.

关键词Massive MIMO-OFDM compressed sensing channel estimation structured sparsity message passing
URL查看原文
收录类别SCI ; SCIE ; EI
资助项目Key Areas of Research and Development Program of Guangdong Province, China[2018B010114001]
WOS研究方向Engineering ; Telecommunications
WOS类目Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000480661000004
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS关键词SIGNAL RECOVERY ; SYSTEMS
原始文献类型Article
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/49480
专题信息科学与技术学院
信息科学与技术学院_硕士生
通讯作者Yuan, Xiaojun
作者单位
1.Univ Elect Sci & Technol China, Ctr Intelligent Networking & Commun, Natl Lab Sci & Thchnol Commun, Chengdu 611731, Sichuan, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Infonnat Technol, Shanghai 200050, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
5.Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Kuai, Xiaoyan,Chen, Lei,Yuan, Xiaojun,et al. Structured Turbo Compressed Sensing for Downlink Massive MIMO-OFDM Channel Estimation[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2019,18(8):3813-3826.
APA Kuai, Xiaoyan,Chen, Lei,Yuan, Xiaojun,&Liu, An.(2019).Structured Turbo Compressed Sensing for Downlink Massive MIMO-OFDM Channel Estimation.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,18(8),3813-3826.
MLA Kuai, Xiaoyan,et al."Structured Turbo Compressed Sensing for Downlink Massive MIMO-OFDM Channel Estimation".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 18.8(2019):3813-3826.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Kuai, Xiaoyan]的文章
[Chen, Lei]的文章
[Yuan, Xiaojun]的文章
百度学术
百度学术中相似的文章
[Kuai, Xiaoyan]的文章
[Chen, Lei]的文章
[Yuan, Xiaojun]的文章
必应学术
必应学术中相似的文章
[Kuai, Xiaoyan]的文章
[Chen, Lei]的文章
[Yuan, Xiaojun]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TWC.2019.2917905.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。