消息
×
loading..
KARLM: Enhancing LLM-based Recommendation Systems with Knowledge Bases
2025-04-11
会议录名称ICASSP 2025 - 2025 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
ISSN1520-6149
发表状态已发表
DOI10.1109/ICASSP49660.2025.10888867
摘要

Large language models signify a pivotal advancement in general artificial intelligence, exhibiting capabilities that exceed human performance in diverse tasks. Nevertheless, these models often lack expertise in specialized knowledge areas. To augment the performance of LLMs in downstream applications, enhancing their knowledge acquisition and comprehension is imperative. In this paper, we introduce a knowledge-enhanced large language model, named "KARLM", which integrates symbolic AI into the training of LLM through a knowledge base derived from logic extracted from datasets and external resources. By incorporating this KB in conjunction with training corpora, "KARLM" is adeptly enabled to acquire and understand domain-specific knowledge. We validated the effectiveness of this method on recommendation tasks. Extensive experiments on multiple datasets indicate that "KARLM" successfully learns item knowledge and outperforms state-of-the-art baselines.

会议地点Hyderabad, India
会议日期6-11 April 2025
URL查看原文
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/493644
专题信息科学与技术学院_硕士生
共同第一作者Dehong Chen; Xiaoyi Shen
作者单位
1.University of Science and Technology of China
2.ShanghaiTech University
3.China Mobile(SuZhou) Software Technology Co.,Ltd
4.MoE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition
推荐引用方式
GB/T 7714
Ze Song,Dehong Chen,Xiaoyi Shen,et al. KARLM: Enhancing LLM-based Recommendation Systems with Knowledge Bases[C],2025.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ze Song]的文章
[Dehong Chen]的文章
[Xiaoyi Shen]的文章
百度学术
百度学术中相似的文章
[Ze Song]的文章
[Dehong Chen]的文章
[Xiaoyi Shen]的文章
必应学术
必应学术中相似的文章
[Ze Song]的文章
[Dehong Chen]的文章
[Xiaoyi Shen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。