Large Covariance Matrix Estimation for Groups of Highly Correlated Variables via Nonconvex Optimization
2025-04
会议录名称ICASSP 2025 - 2025 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
发表状态正式接收
摘要

This paper addresses the problem of covariance matrix estimation in scenarios where the underlying variables can be divided into groups, with variables within each group being highly correlated. Consequently, the covariance matrix displays both sparse and approximately low-rank characteristics due to these highly correlated groups. By appropriately rearranging the variables, the covariance matrix can be transformed into an approximately block diagonal form. In this work, we investigate the estimation of covariance matrices under this structure in high dimensions. We propose a least squares-based covariance estimation method that incorporates a trace norm along with a nonconvex sparsity regularizer to promote both low-rankness and sparsity. Additionally, we introduce a spectral constraint to ensure the positive semi-definiteness of the covariance matrix, even in cases of finite samples, while permitting the integration of prior spectral information. To solve this nonconvex statistical estimation problem, we develop an algorithm based on the majorization-minimization framework, which iteratively solves a convex subproblem. We provide theoretical guarantees that demonstrate the proposed algorithm converges to an estimator achieving the oracle statistical rate under mild technical conditions. Numerical experiments corroborate these theoretical findings.

会议举办国India
关键词Covariance matrix estimation joint sparse and low-rank block diagonal, correlated clusters nonconvex statistical optimization
会议地点Hyderabad, India
会议日期April 6-11, 2025
语种英语
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/493533
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_赵子平组
通讯作者Ziping Zhao
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Shanshan Zou,Ziping Zhao. Large Covariance Matrix Estimation for Groups of Highly Correlated Variables via Nonconvex Optimization[C],2025.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shanshan Zou]的文章
[Ziping Zhao]的文章
百度学术
百度学术中相似的文章
[Shanshan Zou]的文章
[Ziping Zhao]的文章
必应学术
必应学术中相似的文章
[Shanshan Zou]的文章
[Ziping Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。