消息
×
loading..
QuantTPM: Efficient Mixed-Precision Quantization Framework for Tractable Probabilistic Models
2025
发表期刊IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (IF:2.7[JCR-2023],2.9[5-Year])
ISSN1937-4151
EISSN1937-4151
卷号PP期号:99
发表状态已发表
DOI10.1109/TCAD.2025.3543424
摘要

Tractable probabilistic models (TPMs) can perform reliable probabilistic inference and enhance the reasoning capabilities of edge devices, such as aiding decision-making for autonomous vehicles. To deploy TPMs in edge scenarios with constrained hardware resources and energy, efficient quantization algorithms are necessary. However, the traditional quantization methods for neural networks are not applicable to TPMs due to the irregular model structure and highly varying data distribution. To address the issues, we propose QuantTPM, a mixed-precision quantization framework designed to enhance the energy and resource efficiency of TPM inference. First, we reformulate the irregular model structure into a unified format, as irregular structures are inefficient for hardware implementation. Second, we divide the reformulated model graph into hierarchical levels, so as to assign appropriate quantization bit-widths for different levels with varying precision requirements. Third, we decompose the entire mixed-precision quantization search into several steps with smaller search spaces, so as to reduce the algorithm complexity and save search time. Compared with state-of-the-art works, our mixed-precision quantization framework achieves, on average, 3.7× weight compression, 6.0× resource efficiency, and 4.8× energy consumption, while maintaining competitive accuracy.

关键词Mixed precision - Mixed precision quantization - Probabilistic inference - Probabilistic models - Product networks - Quantisation - Resource efficiencies - Sum product - Sum-product network - Tractable probabilistic model
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20250917940399
EI主题词Energy utilization
EI分类号1009.2 Energy Consumption
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/493493
专题信息科学与技术学院
信息科学与技术学院_PI研究组_哈亚军组
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
3.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
4.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
5.Shanghai Engineering Research Center of Energy Efficient and Custom AI Integrated Circuits, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Shen Zhang,Bin Ning,Guangyao Yan,et al. QuantTPM: Efficient Mixed-Precision Quantization Framework for Tractable Probabilistic Models[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2025,PP(99).
APA Shen Zhang,Bin Ning,Guangyao Yan,Xinzhe Liu,Weixiong Jiang,&Yajun Ha.(2025).QuantTPM: Efficient Mixed-Precision Quantization Framework for Tractable Probabilistic Models.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,PP(99).
MLA Shen Zhang,et al."QuantTPM: Efficient Mixed-Precision Quantization Framework for Tractable Probabilistic Models".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS PP.99(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shen Zhang]的文章
[Bin Ning]的文章
[Guangyao Yan]的文章
百度学术
百度学术中相似的文章
[Shen Zhang]的文章
[Bin Ning]的文章
[Guangyao Yan]的文章
必应学术
必应学术中相似的文章
[Shen Zhang]的文章
[Bin Ning]的文章
[Guangyao Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。