Synchrotron based sparse-view CT artifact correction with STC-UNet
2025-04
发表期刊NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT (IF:1.5[JCR-2023],1.4[5-Year])
ISSN0168-9002
EISSN1872-9576
卷号1073
发表状态已发表
DOI10.1016/j.nima.2025.170306
摘要

Synchrotron radiation micro-CT imaging is widely used in various scientific fields as a 3D non-destructive imaging technique with high penetration, high resolution and high contrast. Roots According to the Shannon-Nyquist theorem, sufficient projection data need to be collected to obtain high-quality CT reconstructed slices. In order to improve the temporal resolution of CT, sparse data sampling methods have been proposed. However, images reconstructed from sparse view projections often have severe streak artifacts. In this paper, we propose an artifact correction method swin transformer and convolutional U-net (STC-Unet) for synchrotron sparse CT. The network is based on the structure of U-Net, which combines the local feature extraction capability of convolutional neural network and the global feature extraction capability of Transformer in the encoder part, and reduces the artifacts introduced by the single up-sampling by using a dual up-sampling module in the decoder part. The method is applied to sparse CT experiments on synchrotron radiation metal mesh samples, and the results show that the method has good results in removing artifacts while preserving structural details. Compared with other methods, the quantitative evaluation of our proposed model is significantly improved. © 2025 Elsevier B.V.

关键词Image enhancement Image reconstruction Synchrotron radiation Artefact correction CT imaging Extraction capability Micro CT Non-destructive imaging Scientific fields Sparse-view CT Swin transformer Synchrotron radiation CT Upsampling
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National key research and development program of China[
WOS研究方向Instruments & Instrumentation ; Nuclear Science & Technology ; Physics
WOS类目Instruments & Instrumentation ; Nuclear Science & Technology ; Physics, Nuclear ; Physics, Particles & Fields
WOS记录号WOS:001427087200001
出版者Elsevier B.V.
EI入藏号20250717875376
EI主题词Computerized tomography
EI分类号1106.3.1 Image Processing ; 1301.2.1.1.2 Synchrotron Radiation Sources ; 746 Imaging Techniques
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/490314
专题物质科学与技术学院_博士生
物质科学与技术学院_特聘教授组_胡钧组
通讯作者Deng, Biao
作者单位
1.ShanghaiTech University, No.393 Middle Huaxia Road, Pudong New Area, Shanghai; 201210, China;
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No.2019 Jialuo Road, Shanghai; 201800, China;
3.Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No.239 Zhangheng Road, Shanghai; 201204, China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zhang, Renmu,Wang, Jun,Wang, Lihua,et al. Synchrotron based sparse-view CT artifact correction with STC-UNet[J]. NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT,2025,1073.
APA Zhang, Renmu,Wang, Jun,Wang, Lihua,Deng, Biao,&Hu, Jun.(2025).Synchrotron based sparse-view CT artifact correction with STC-UNet.NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT,1073.
MLA Zhang, Renmu,et al."Synchrotron based sparse-view CT artifact correction with STC-UNet".NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 1073(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Renmu]的文章
[Wang, Jun]的文章
[Wang, Lihua]的文章
百度学术
百度学术中相似的文章
[Zhang, Renmu]的文章
[Wang, Jun]的文章
[Wang, Lihua]的文章
必应学术
必应学术中相似的文章
[Zhang, Renmu]的文章
[Wang, Jun]的文章
[Wang, Lihua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。