ShanghaiTech University Knowledge Management System
Synchrotron based sparse-view CT artifact correction with STC-UNet | |
2025-04 | |
发表期刊 | NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT (IF:1.5[JCR-2023],1.4[5-Year]) |
ISSN | 0168-9002 |
EISSN | 1872-9576 |
卷号 | 1073 |
发表状态 | 已发表 |
DOI | 10.1016/j.nima.2025.170306 |
摘要 | Synchrotron radiation micro-CT imaging is widely used in various scientific fields as a 3D non-destructive imaging technique with high penetration, high resolution and high contrast. Roots According to the Shannon-Nyquist theorem, sufficient projection data need to be collected to obtain high-quality CT reconstructed slices. In order to improve the temporal resolution of CT, sparse data sampling methods have been proposed. However, images reconstructed from sparse view projections often have severe streak artifacts. In this paper, we propose an artifact correction method swin transformer and convolutional U-net (STC-Unet) for synchrotron sparse CT. The network is based on the structure of U-Net, which combines the local feature extraction capability of convolutional neural network and the global feature extraction capability of Transformer in the encoder part, and reduces the artifacts introduced by the single up-sampling by using a dual up-sampling module in the decoder part. The method is applied to sparse CT experiments on synchrotron radiation metal mesh samples, and the results show that the method has good results in removing artifacts while preserving structural details. Compared with other methods, the quantitative evaluation of our proposed model is significantly improved. © 2025 Elsevier B.V. |
关键词 | Image enhancement Image reconstruction Synchrotron radiation Artefact correction CT imaging Extraction capability Micro CT Non-destructive imaging Scientific fields Sparse-view CT Swin transformer Synchrotron radiation CT Upsampling |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National key research and development program of China[ |
WOS研究方向 | Instruments & Instrumentation ; Nuclear Science & Technology ; Physics |
WOS类目 | Instruments & Instrumentation ; Nuclear Science & Technology ; Physics, Nuclear ; Physics, Particles & Fields |
WOS记录号 | WOS:001427087200001 |
出版者 | Elsevier B.V. |
EI入藏号 | 20250717875376 |
EI主题词 | Computerized tomography |
EI分类号 | 1106.3.1 Image Processing ; 1301.2.1.1.2 Synchrotron Radiation Sources ; 746 Imaging Techniques |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/490314 |
专题 | 物质科学与技术学院_博士生 物质科学与技术学院_特聘教授组_胡钧组 |
通讯作者 | Deng, Biao |
作者单位 | 1.ShanghaiTech University, No.393 Middle Huaxia Road, Pudong New Area, Shanghai; 201210, China; 2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No.2019 Jialuo Road, Shanghai; 201800, China; 3.Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No.239 Zhangheng Road, Shanghai; 201204, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zhang, Renmu,Wang, Jun,Wang, Lihua,et al. Synchrotron based sparse-view CT artifact correction with STC-UNet[J]. NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT,2025,1073. |
APA | Zhang, Renmu,Wang, Jun,Wang, Lihua,Deng, Biao,&Hu, Jun.(2025).Synchrotron based sparse-view CT artifact correction with STC-UNet.NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT,1073. |
MLA | Zhang, Renmu,et al."Synchrotron based sparse-view CT artifact correction with STC-UNet".NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 1073(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。