Deep learning reconstruction of triple-source CT data with sparse view and truncation
2025-02
会议录名称PROGRESS IN BIOMEDICAL OPTICS AND IMAGING - PROCEEDINGS OF SPIE
卷号13405
发表状态正式接收
摘要

Cardiovascular disease remains a leading cause of global mortality, driving innovation in cardiac imaging. Interior tomography, which limits x-ray beams to a specific region of interest (ROI), significantly reduces radiation exposure, making it ideal for cardiac applications. A Triple-Source CT (TSCT) capable of performing interior tomography of the heart using three simultaneous imaging chains shows promise for rapid, low-dose cardiac imaging. However, conventional analytic reconstruction algorithms struggle with severe artifacts due to data truncation and sparse-view sampling. In this paper, we propose a novel interpolation-based dual-task network for deep reconstruction of cardiac CT images in TSCT. Our approach employs two sub-networks that address sparse-view and truncation artifacts separately, leveraging distinct ground truths to constrain each sub-network during training. This separation simplifies training and enables more focused and effective artifact removal. Additionally, we utilize two interpolation methods to complete the sinogram as a prior input, enhancing reconstruction accuracy. Experimental results from imaging a porcine heart using 84 views and a 31.3% truncation ratio demonstrate that our method effectively suppresses both artifact types while preserving image details. Compared to conventional FBP, our approach achieves improvements of 40% in RMSE and 6% in SSIM. This reconstruction method shows potential for cardiac imaging in TSCT systems.

会议录编者/会议主办者Konica Minolta ; Siemens Healthineers ; The Society of Photo-Optical Instrumentation Engineers (SPIE)
关键词Triple-Source CT Dual-Task Method Sparse View Low Dose
会议名称Medical Imaging 2025: Physics of Medical Imaging
会议地点San Diego, California, United states
会议日期February 16, 2025 - February 20, 2025
学科门类EI ; CPCI-S
语种英语
出版者SPIE
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/490304
专题信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_曹国华组
生物医学工程学院_硕士生
通讯作者Guohua Cao
作者单位
1.School of Biomedical Engineering, ShanghaiTech, Shanghai; 200120, China 2.State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China
2.State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Ying Cheng,Zhe Wang,Linjie Chen,et al. Deep learning reconstruction of triple-source CT data with sparse view and truncation[C]//Konica Minolta ; Siemens Healthineers ; The Society of Photo-Optical Instrumentation Engineers (SPIE):SPIE,2025.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ying Cheng]的文章
[Zhe Wang]的文章
[Linjie Chen]的文章
百度学术
百度学术中相似的文章
[Ying Cheng]的文章
[Zhe Wang]的文章
[Linjie Chen]的文章
必应学术
必应学术中相似的文章
[Ying Cheng]的文章
[Zhe Wang]的文章
[Linjie Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。