ShanghaiTech University Knowledge Management System
Deep learning reconstruction of triple-source CT data with sparse view and truncation | |
2025-02 | |
会议录名称 | PROGRESS IN BIOMEDICAL OPTICS AND IMAGING - PROCEEDINGS OF SPIE
![]() |
卷号 | 13405 |
发表状态 | 正式接收 |
摘要 | Cardiovascular disease remains a leading cause of global mortality, driving innovation in cardiac imaging. Interior tomography, which limits x-ray beams to a specific region of interest (ROI), significantly reduces radiation exposure, making it ideal for cardiac applications. A Triple-Source CT (TSCT) capable of performing interior tomography of the heart using three simultaneous imaging chains shows promise for rapid, low-dose cardiac imaging. However, conventional analytic reconstruction algorithms struggle with severe artifacts due to data truncation and sparse-view sampling. In this paper, we propose a novel interpolation-based dual-task network for deep reconstruction of cardiac CT images in TSCT. Our approach employs two sub-networks that address sparse-view and truncation artifacts separately, leveraging distinct ground truths to constrain each sub-network during training. This separation simplifies training and enables more focused and effective artifact removal. Additionally, we utilize two interpolation methods to complete the sinogram as a prior input, enhancing reconstruction accuracy. Experimental results from imaging a porcine heart using 84 views and a 31.3% truncation ratio demonstrate that our method effectively suppresses both artifact types while preserving image details. Compared to conventional FBP, our approach achieves improvements of 40% in RMSE and 6% in SSIM. This reconstruction method shows potential for cardiac imaging in TSCT systems. |
会议录编者/会议主办者 | Konica Minolta ; Siemens Healthineers ; The Society of Photo-Optical Instrumentation Engineers (SPIE) |
关键词 | Triple-Source CT Dual-Task Method Sparse View Low Dose |
会议名称 | Medical Imaging 2025: Physics of Medical Imaging |
会议地点 | San Diego, California, United states |
会议日期 | February 16, 2025 - February 20, 2025 |
学科门类 | EI ; CPCI-S |
语种 | 英语 |
出版者 | SPIE |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/490304 |
专题 | 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_曹国华组 生物医学工程学院_硕士生 |
通讯作者 | Guohua Cao |
作者单位 | 1.School of Biomedical Engineering, ShanghaiTech, Shanghai; 200120, China 2.State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China 2.State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Ying Cheng,Zhe Wang,Linjie Chen,et al. Deep learning reconstruction of triple-source CT data with sparse view and truncation[C]//Konica Minolta ; Siemens Healthineers ; The Society of Photo-Optical Instrumentation Engineers (SPIE):SPIE,2025. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ying Cheng]的文章 |
[Zhe Wang]的文章 |
[Linjie Chen]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ying Cheng]的文章 |
[Zhe Wang]的文章 |
[Linjie Chen]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ying Cheng]的文章 |
[Zhe Wang]的文章 |
[Linjie Chen]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。