| |||||||
ShanghaiTech University Knowledge Management System
Segmentation and Morphological Handedness Classification of Chiral Materials by Deep Learning | |
2025-02-01 | |
发表期刊 | JOURNAL OF PHYSICAL CHEMISTRY C (IF:3.3[JCR-2023],3.5[5-Year]) |
ISSN | 1932-7447 |
EISSN | 1932-7455 |
卷号 | 129期号:7页码:3690-3697 |
发表状态 | 已发表 |
DOI | 10.1021/acs.jpcc.5c00324 |
摘要 | Handedness classification plays a crucial role in the synthesis and application of chiral nanomaterials, while currently, it usually relies on manual detection and identification. Artificial intelligence is increasingly being integrated into scientific discovery to achieve goals that might not have been possible using traditional methods alone. Here, we introduce a novel framework to automatically recognize and classify chiral nanoparticles based on their asymmetric morphology in scanning electron microscope images. By combining image segmentation models with convolutional neural networks, we create a workflow to achieve a high accuracy of classification on real SEM images with minimal labeling. The approach has been successfully applied to two chiral nanomaterials, demonstrating its robustness and potential for integration into high-throughput SEM analysis workflows and further studies of chiral materials. |
关键词 | Chirality Image segmentation Morphology Nanoclay Accuracy of classifications Chiral material Convolutional neural network Detection and identifications Electron microscope images High-accuracy Image segmentation model Scanning electrons Scientific discovery Work-flows |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[22222108] ; School of Physical Sciences and Technology, ShanghaiTech University[SPST-AIC10112914] |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science |
WOS类目 | Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:001416500200001 |
出版者 | AMER CHEMICAL SOC |
EI入藏号 | 20250617842451 |
EI主题词 | Convolutional neural networks |
EI分类号 | 1101.2.1 Deep Learning ; 1106.3.1 Image Processing ; 1301.1.3 Atomic and Molecular Physics ; 204.1 Ceramics ; 214 Materials Science |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/487112 |
专题 | 信息科学与技术学院 物质科学与技术学院 物质科学与技术学院_PI研究组_马延航组 信息科学与技术学院_PI研究组_虞晶怡组 物质科学与技术学院_硕士生 信息科学与技术学院_硕士生 |
共同第一作者 | Chu, Chaoyang |
通讯作者 | Ma, Yanhang |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.ShanghaiTech Univ, Shanghai Key Lab High Resolut Electron Microscopy, Shanghai 201210, Peoples R China 3.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 4.Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China |
第一作者单位 | 信息科学与技术学院; 上海科技大学 |
通讯作者单位 | 信息科学与技术学院; 上海科技大学; 物质科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Huang, Wenhao,Chu, Chaoyang,Wu, Fengxia,et al. Segmentation and Morphological Handedness Classification of Chiral Materials by Deep Learning[J]. JOURNAL OF PHYSICAL CHEMISTRY C,2025,129(7):3690-3697. |
APA | Huang, Wenhao,Chu, Chaoyang,Wu, Fengxia,Niu, Wenxin,Yu, Jingyi,&Ma, Yanhang.(2025).Segmentation and Morphological Handedness Classification of Chiral Materials by Deep Learning.JOURNAL OF PHYSICAL CHEMISTRY C,129(7),3690-3697. |
MLA | Huang, Wenhao,et al."Segmentation and Morphological Handedness Classification of Chiral Materials by Deep Learning".JOURNAL OF PHYSICAL CHEMISTRY C 129.7(2025):3690-3697. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。