消息
×
loading..
Segmentation and Morphological Handedness Classification of Chiral Materials by Deep Learning
2025-02-01
发表期刊JOURNAL OF PHYSICAL CHEMISTRY C (IF:3.3[JCR-2023],3.5[5-Year])
ISSN1932-7447
EISSN1932-7455
卷号129期号:7页码:3690-3697
发表状态已发表
DOI10.1021/acs.jpcc.5c00324
摘要

Handedness classification plays a crucial role in the synthesis and application of chiral nanomaterials, while currently, it usually relies on manual detection and identification. Artificial intelligence is increasingly being integrated into scientific discovery to achieve goals that might not have been possible using traditional methods alone. Here, we introduce a novel framework to automatically recognize and classify chiral nanoparticles based on their asymmetric morphology in scanning electron microscope images. By combining image segmentation models with convolutional neural networks, we create a workflow to achieve a high accuracy of classification on real SEM images with minimal labeling. The approach has been successfully applied to two chiral nanomaterials, demonstrating its robustness and potential for integration into high-throughput SEM analysis workflows and further studies of chiral materials.

关键词Chirality Image segmentation Morphology Nanoclay Accuracy of classifications Chiral material Convolutional neural network Detection and identifications Electron microscope images High-accuracy Image segmentation model Scanning electrons Scientific discovery Work-flows
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China[22222108] ; School of Physical Sciences and Technology, ShanghaiTech University[SPST-AIC10112914]
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号WOS:001416500200001
出版者AMER CHEMICAL SOC
EI入藏号20250617842451
EI主题词Convolutional neural networks
EI分类号1101.2.1 Deep Learning ; 1106.3.1 Image Processing ; 1301.1.3 Atomic and Molecular Physics ; 204.1 Ceramics ; 214 Materials Science
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/487112
专题信息科学与技术学院
物质科学与技术学院
物质科学与技术学院_PI研究组_马延航组
信息科学与技术学院_PI研究组_虞晶怡组
物质科学与技术学院_硕士生
信息科学与技术学院_硕士生
共同第一作者Chu, Chaoyang
通讯作者Ma, Yanhang
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.ShanghaiTech Univ, Shanghai Key Lab High Resolut Electron Microscopy, Shanghai 201210, Peoples R China
3.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
4.Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
第一作者单位信息科学与技术学院;  上海科技大学
通讯作者单位信息科学与技术学院;  上海科技大学;  物质科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Huang, Wenhao,Chu, Chaoyang,Wu, Fengxia,et al. Segmentation and Morphological Handedness Classification of Chiral Materials by Deep Learning[J]. JOURNAL OF PHYSICAL CHEMISTRY C,2025,129(7):3690-3697.
APA Huang, Wenhao,Chu, Chaoyang,Wu, Fengxia,Niu, Wenxin,Yu, Jingyi,&Ma, Yanhang.(2025).Segmentation and Morphological Handedness Classification of Chiral Materials by Deep Learning.JOURNAL OF PHYSICAL CHEMISTRY C,129(7),3690-3697.
MLA Huang, Wenhao,et al."Segmentation and Morphological Handedness Classification of Chiral Materials by Deep Learning".JOURNAL OF PHYSICAL CHEMISTRY C 129.7(2025):3690-3697.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huang, Wenhao]的文章
[Chu, Chaoyang]的文章
[Wu, Fengxia]的文章
百度学术
百度学术中相似的文章
[Huang, Wenhao]的文章
[Chu, Chaoyang]的文章
[Wu, Fengxia]的文章
必应学术
必应学术中相似的文章
[Huang, Wenhao]的文章
[Chu, Chaoyang]的文章
[Wu, Fengxia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。