Residual Diffusion Model for Joint Stochastic Trajectory Prediction in Roadside Surveillance Environments
2024-10-10
会议录名称2024 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC)
发表状态已发表
DOI10.1109/SMC54092.2024.10832096
摘要

Roadside surveillance video signals usually contain historical trajectory information and environmental data of vehicles in a specific environment. Vehicle trajectories can be defined as time series signals to facilitate the prediction of future vehicle trajectories. We propose a method based on a residual diffusion model to reason about the joint distribution of future trajectories across multiple vehicles. This approach has several key advantages: First, the model can learn multiple probability distributions that capture different potential future outcomes for multiple vehicles. Secondly, by combining the trajectory information of multiple vehicles, the model can reason in the way of the standard denoising model and multiple residual denoising models, so as to improve the model performance and prediction speed. Finally, a general constraint function was introduced to ensure the control trajectory of multiple vehicles and avoid collisions. A large number of experimental results on the NGSIM dataset show that the model has a significant improvement in prediction accuracy compared with the baseline method.

会议地点Kuching, Malaysia
会议日期6-10 Oct. 2024
URL查看原文
语种英语
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/484004
专题信息科学与技术学院_硕士生
作者单位
1.Shanghai Institute of Microsystem and Information Technology
2.University of Chinese Academy of Sciences
3.ShanghaiTech University
推荐引用方式
GB/T 7714
Haoxuan Li,Wei He,Tao Wang,et al. Residual Diffusion Model for Joint Stochastic Trajectory Prediction in Roadside Surveillance Environments[C],2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Haoxuan Li]的文章
[Wei He]的文章
[Tao Wang]的文章
百度学术
百度学术中相似的文章
[Haoxuan Li]的文章
[Wei He]的文章
[Tao Wang]的文章
必应学术
必应学术中相似的文章
[Haoxuan Li]的文章
[Wei He]的文章
[Tao Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。