ShanghaiTech University Knowledge Management System
KURDYKA-LOJASIEWICZ EXPONENT VIA HADAMARD PARAMETRIZATION | |
2025 | |
发表期刊 | SIAM JOURNAL ON OPTIMIZATION (IF:2.6[JCR-2023],3.2[5-Year]) |
ISSN | 1052-6234 |
EISSN | 1095-7189 |
卷号 | 35期号:1页码:62-91 |
发表状态 | 已发表 |
DOI | 10.1137/24M1636186 |
摘要 | We consider a class of 1-regularized optimization problems and the associated smooth ``overparameterized"" optimization problems built upon the Hadamard parametrization, or equivalently, the Hadamard difference parametrization (HDP). We characterize the set of second-order stationary points of the HDP-based model and show that they correspond to some stationary points of the corresponding 1-regularized model. More importantly, we show that the Kurdyka-Lojasiewicz \ (KL) exponent of the HDP-based model at a second-order stationary point can be inferred from that of the corresponding 1-regularized model under suitable assumptions. Our assumptions are general enough to cover a wide variety of loss functions commonly used in 1-regularized models, such as the least squares loss function and the logistic loss function. Since the KL exponents of many 1-regularized models are explicitly known in the literature, our results allow us to leverage these known exponents to deduce the KL exponents at second-order stationary points of the corresponding HDP-based models, which were previously unknown. Finally, we demonstrate how these explicit KL exponents at second-order stationary points can be applied to deducing the explicit local convergence rate of a standard gradient descent method for minimizing the HDP-based model. © 2025 Society for Industrial and Applied Mathematics. |
关键词 | Convergence of numerical methods Equivalence classes Gradient methods Hadamard transforms Optimization Hadamard Kurdyka–&lstrok ojasiewicz exponent Overparametrization Parametrizations Property Second orders Second-order stationarity Stationarity Stationary points Strict saddle property |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | Natural Science Founda-tion of Sichuan Province[2022NSFSC1830] ; Southwest Minzu University Research Startup Funds[RQD2022035] ; Hong Kong Research Grants Council[PolyU153001/22p] ; Natural Science Foundation of Shanghai[21ZR1442800] |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:001447231800004 |
出版者 | Society for Industrial and Applied Mathematics Publications |
EI入藏号 | 20250317706835 |
EI主题词 | Least squares approximations |
EI分类号 | 1102.1 ; 1201 ; 1201.3 ; 1201.7 ; 1201.9 |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483868 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_王浩组 |
作者单位 | 1.School of Data Science (SDS), Shenzhen Research Institute of Big Data (SRIBD), Shenzhen, China; 2.Chinese University of Hong Kong, Hong Kong; 3.School of Mathematics, Southwest Minzu University, Sichuan, Chengdu, China; 4.Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China; 5.School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
推荐引用方式 GB/T 7714 | Ouyang, Wenqing,Liu, Yuncheng,Pong, Ting Kei,et al. KURDYKA-LOJASIEWICZ EXPONENT VIA HADAMARD PARAMETRIZATION[J]. SIAM JOURNAL ON OPTIMIZATION,2025,35(1):62-91. |
APA | Ouyang, Wenqing,Liu, Yuncheng,Pong, Ting Kei,&Wang, Hao.(2025).KURDYKA-LOJASIEWICZ EXPONENT VIA HADAMARD PARAMETRIZATION.SIAM JOURNAL ON OPTIMIZATION,35(1),62-91. |
MLA | Ouyang, Wenqing,et al."KURDYKA-LOJASIEWICZ EXPONENT VIA HADAMARD PARAMETRIZATION".SIAM JOURNAL ON OPTIMIZATION 35.1(2025):62-91. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。