消息
×
loading..
A battery capacity trajectory prediction framework with mileage correction for electric buses
2025-02-28
发表期刊JOURNAL OF ENERGY STORAGE (IF:8.9[JCR-2023],9.0[5-Year])
ISSN2352-152X
EISSN2352-152X
卷号110
发表状态已发表
DOI10.1016/j.est.2025.115301
摘要

This paper proposes a capacity trajectory prediction framework for the onboard batteries equipped in electric buses. The framework is a sequence-to-sequence (Seq2Seq) structure based on bi-directional long short-term memory (BiLSTM) neural networks. To develop and evaluate the framework, this paper utilizes the field data of 200 electric buses of two models (denoted as A and B) during the period of January 2019 to December 2019, which is collected by the National Big Data Alliance of New Energy Vehicles (NDANEV), Beijing, China. To more accurately estimate and label the battery capacity, a mileage correction method is developed based on the discharging segments of the electric bus field data. Compared to the Coulomb counting method typically adopted for capacity estimation, this method takes into account the effects of the mileage on the capacity. With tailored feature engineering, 9 features closely related to the capacity are selected for each of the two bus models. Evaluation results show that the maximum prediction errors for the 12 buses in the two test sets are 2.4941 Ah in terms of the mean absolute error (MAE) and 3.0153 Ah in terms of the root mean square error (RMSE), respectively. If they are normalized with respect to the rated battery capacity of 320 Ah estimated for the buses of model B, the maximum normalized prediction errors are 0.78% and 0.94%, respectively, which clearly demonstrate the effectiveness of the proposed framework. © 2025 Elsevier Ltd

关键词Trajectories Battery capacity Battery capacity trajectory prediction Electric bus Feature engineerings Field data Mileage correction Prediction errors Sequence structure Sequence-to-sequence structure Trajectory prediction
URL查看原文
收录类别EI ; SCI
语种英语
WOS研究方向Energy & Fuels
WOS类目Energy & Fuels
WOS记录号WOS:001416990400001
出版者Elsevier Ltd
EI入藏号20250317681964
EI主题词Prediction models
EI分类号1101 ; 656 Space Flight
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483843
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_杨恒昭组
通讯作者Yang, Hengzhao
作者单位
ShanghaiTech University, 393 Middle Huaxia Road, Shanghai; 201210, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Xu, Yifei,Yang, Hengzhao. A battery capacity trajectory prediction framework with mileage correction for electric buses[J]. JOURNAL OF ENERGY STORAGE,2025,110.
APA Xu, Yifei,&Yang, Hengzhao.(2025).A battery capacity trajectory prediction framework with mileage correction for electric buses.JOURNAL OF ENERGY STORAGE,110.
MLA Xu, Yifei,et al."A battery capacity trajectory prediction framework with mileage correction for electric buses".JOURNAL OF ENERGY STORAGE 110(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Yifei]的文章
[Yang, Hengzhao]的文章
百度学术
百度学术中相似的文章
[Xu, Yifei]的文章
[Yang, Hengzhao]的文章
必应学术
必应学术中相似的文章
[Xu, Yifei]的文章
[Yang, Hengzhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。