| |||||||
ShanghaiTech University Knowledge Management System
A battery capacity trajectory prediction framework with mileage correction for electric buses | |
2025-02-28 | |
发表期刊 | JOURNAL OF ENERGY STORAGE (IF:8.9[JCR-2023],9.0[5-Year]) |
ISSN | 2352-152X |
EISSN | 2352-152X |
卷号 | 110 |
发表状态 | 已发表 |
DOI | 10.1016/j.est.2025.115301 |
摘要 | This paper proposes a capacity trajectory prediction framework for the onboard batteries equipped in electric buses. The framework is a sequence-to-sequence (Seq2Seq) structure based on bi-directional long short-term memory (BiLSTM) neural networks. To develop and evaluate the framework, this paper utilizes the field data of 200 electric buses of two models (denoted as A and B) during the period of January 2019 to December 2019, which is collected by the National Big Data Alliance of New Energy Vehicles (NDANEV), Beijing, China. To more accurately estimate and label the battery capacity, a mileage correction method is developed based on the discharging segments of the electric bus field data. Compared to the Coulomb counting method typically adopted for capacity estimation, this method takes into account the effects of the mileage on the capacity. With tailored feature engineering, 9 features closely related to the capacity are selected for each of the two bus models. Evaluation results show that the maximum prediction errors for the 12 buses in the two test sets are 2.4941 Ah in terms of the mean absolute error (MAE) and 3.0153 Ah in terms of the root mean square error (RMSE), respectively. If they are normalized with respect to the rated battery capacity of 320 Ah estimated for the buses of model B, the maximum normalized prediction errors are 0.78% and 0.94%, respectively, which clearly demonstrate the effectiveness of the proposed framework. © 2025 Elsevier Ltd |
关键词 | Trajectories Battery capacity Battery capacity trajectory prediction Electric bus Feature engineerings Field data Mileage correction Prediction errors Sequence structure Sequence-to-sequence structure Trajectory prediction |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
WOS研究方向 | Energy & Fuels |
WOS类目 | Energy & Fuels |
WOS记录号 | WOS:001416990400001 |
出版者 | Elsevier Ltd |
EI入藏号 | 20250317681964 |
EI主题词 | Prediction models |
EI分类号 | 1101 ; 656 Space Flight |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/483843 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_杨恒昭组 |
通讯作者 | Yang, Hengzhao |
作者单位 | ShanghaiTech University, 393 Middle Huaxia Road, Shanghai; 201210, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xu, Yifei,Yang, Hengzhao. A battery capacity trajectory prediction framework with mileage correction for electric buses[J]. JOURNAL OF ENERGY STORAGE,2025,110. |
APA | Xu, Yifei,&Yang, Hengzhao.(2025).A battery capacity trajectory prediction framework with mileage correction for electric buses.JOURNAL OF ENERGY STORAGE,110. |
MLA | Xu, Yifei,et al."A battery capacity trajectory prediction framework with mileage correction for electric buses".JOURNAL OF ENERGY STORAGE 110(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xu, Yifei]的文章 |
[Yang, Hengzhao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xu, Yifei]的文章 |
[Yang, Hengzhao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xu, Yifei]的文章 |
[Yang, Hengzhao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。