NLPrompt: Noise-Label Prompt Learning for Vision-Language Models
2024-12-02
状态已发表
摘要The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text encoder representations in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representation and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
语种英语
DOIarXiv:2412.01256
相关网址查看原文
出处Arxiv
收录类别PPRN.PPRN
WOS记录号PPRN:119639141
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/471031
专题信息科学与技术学院_PI研究组_石野组
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_汪婧雅组
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Chinese Univ Hong Kong, Shenzhen, Peoples R China
3.RIKEN Ctr Adv Intelligence Project, Tokyo, Japan
4.Univ Technol Sydney, Sydney, Australia
5.Univ Melbourne, Melbourne, Australia
推荐引用方式
GB/T 7714
Pan, Bikang,Li, Qun,Tang, Xiaoying,et al. NLPrompt: Noise-Label Prompt Learning for Vision-Language Models. 2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Pan, Bikang]的文章
[Li, Qun]的文章
[Tang, Xiaoying]的文章
百度学术
百度学术中相似的文章
[Pan, Bikang]的文章
[Li, Qun]的文章
[Tang, Xiaoying]的文章
必应学术
必应学术中相似的文章
[Pan, Bikang]的文章
[Li, Qun]的文章
[Tang, Xiaoying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。