ShanghaiTech University Knowledge Management System
SRM-Net: Joint Sampling and Reconstruction and Mapping Network for Accelerated 3T Brain Multi-parametric MR Imaging | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING (IF:4.4[JCR-2023],4.8[5-Year]) |
ISSN | 1558-2531 |
卷号 | PP期号:99 |
发表状态 | 已发表 |
DOI | 10.1109/TBME.2024.3523480 |
摘要 | Multi-parametric magnetic resonance imaging (MRI) can provide complementary quantitative information by generating multi-parametric maps and is becoming a promising imaging technique for advanced medical diagnosis. However, multi-parametric MRI requires longer acquisition time than normal MRI scanning. The existing reconstruction methods for accelerated multi-parametric MRI suffer from suboptimal performance due to stagewise optimization, and inefficient utilization of intra- and inter-contrast information. To address these challenges, we propose an all-in-one joint Sampling, Reconstruction, and Mapping network, dubbed as SRM-Net, for multi-parametric MRI reconstruction on multi-coil and multi-contrast MR images. Specifically, our model consists of three modules including sampling, reconstruction, and mapping. In the sampling module, we introduce a sampling scheme to generate individually-optimized sampling pattern across multicontrast images. In the reconstruction module, we adopt a spatio-temporal attention mechanism, which is embedded in a dual-domain-based unrolling framework, to better exploit inter- and intra-contrast correlations. In the mapping module, we employ multi-layer perceptron to model complex nonlinear mapping. Integrating Sampling, Reconstruction, and Mapping, our SRM-Net enables the end-toend learning paradigm. Experimental results show that our SRM-Net generates superior multi-parametric maps including T1, T2∗, and PD for brain on 3T MR scanner compared to state-of-the-art methods, and meanwhile provides promising intermediate weighted MR images. Our code is available at https://github.com/aloneForLiu/fast_mri. |
URL | 查看原文 |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/467857 |
专题 | 生物医学工程学院_本科生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_齐海坤组 生物医学工程学院_PI研究组_张寒组 生物医学工程学院_PI研究组_宗小鹏组 生物医学工程学院_PI研究组_孙开聪组 |
作者单位 | 1.School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China 2.School of Southern Medical University, China 3.Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China 4.Shanghai Clinical Research and Trial Center, Shanghai, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yuxuan Liu,Kaicong Sun,Haikun Qi,et al. SRM-Net: Joint Sampling and Reconstruction and Mapping Network for Accelerated 3T Brain Multi-parametric MR Imaging[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,2024,PP(99). |
APA | Yuxuan Liu.,Kaicong Sun.,Haikun Qi.,Junwei Yang.,Xiaopeng Zong.,...&Dinggang Shen.(2024).SRM-Net: Joint Sampling and Reconstruction and Mapping Network for Accelerated 3T Brain Multi-parametric MR Imaging.IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,PP(99). |
MLA | Yuxuan Liu,et al."SRM-Net: Joint Sampling and Reconstruction and Mapping Network for Accelerated 3T Brain Multi-parametric MR Imaging".IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING PP.99(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。