Constrained Dueling Bandits for Edge Intelligence
2024
发表期刊IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING (IF:6.7[JCR-2023],6.0[5-Year])
ISSN2334-329X
EISSN2327-4697
卷号PP期号:99页码:1126-1136
发表状态已发表
DOI10.1109/TNSE.2024.3524362
摘要

Bandit is acknowledged as a classical analytic tool for the online decision-making problem under uncertainty, e.g., task assignment for crowdsourcing systems given the unknown reliability of workers. In the conventional setup, an agent selects from a set of arms across rounds to balance the exploitation-exploration tradeoff using quantitive reward feedback. Despite bandits' popularity, their practical implementation may run into concerns like 1) obtaining the quantitive reward is a non-trivial problem, e.g., evaluating workers' completion quality (reward) requires domain experts to set up metrics; 2) mismatch between the budgeted agent and costs for selecting arms, e.g., the crowdsourcing platform (agent) should offer payments (cost) to workers to complete tasks. To address such concerns, 1) we employ dueling bandits to learn the uncertainties via qualitative pairwise comparisons rather than quantitive rewards, e.g., whether a worker performs better on the assigned task than the other; 2) we utilize online control to guarantee a within-budget cost while selecting arms. By integrating online learning and online control, we propose a Constrained Two-Dueling Bandit (CTDB) algorithm. We prove that CTDB achieves a $O(1/V + \sqrt{\log T / T})$ round-averaged regret over the horizon $T$ while keeping a budgeted cost where $V$ is a constant parameter balancing the tradeoff between regret minimization and constraint satisfaction. We conduct extensive simulations with synthetic and real-world datasets to demonstrate the outperformance of CTDB over baselines.

关键词Constrained optimization - Costs - Crowdsourcing - Decision making Bandit learning - Budget constraint - Dueling bandit - Long-term budget constraint - Lyapunov optimization - On-line controls - Optimisations - Quantitive - Uncertainty - Workers'
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20250217656615
EI主题词Budget control
EI分类号1201.7 Optimization Techniques - 911 Cost and Value Engineering ; Industrial Economics - 912.2 Management - 971 Social Sciences
原始文献类型Journal article (JA)
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/467855
专题信息科学与技术学院
信息科学与技术学院_PI研究组_邵子瑜组
作者单位
1.Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA, USA
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
3.Hong Kong University of Science and Technology (Guangzhou), China
推荐引用方式
GB/T 7714
Shangshang Wang,Ziyu Shao,Yang Yang. Constrained Dueling Bandits for Edge Intelligence[J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING,2024,PP(99):1126-1136.
APA Shangshang Wang,Ziyu Shao,&Yang Yang.(2024).Constrained Dueling Bandits for Edge Intelligence.IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING,PP(99),1126-1136.
MLA Shangshang Wang,et al."Constrained Dueling Bandits for Edge Intelligence".IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING PP.99(2024):1126-1136.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shangshang Wang]的文章
[Ziyu Shao]的文章
[Yang Yang]的文章
百度学术
百度学术中相似的文章
[Shangshang Wang]的文章
[Ziyu Shao]的文章
[Yang Yang]的文章
必应学术
必应学术中相似的文章
[Shangshang Wang]的文章
[Ziyu Shao]的文章
[Yang Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。