Learning Video Representations without Natural Videos
2024-10-31
状态已发表
摘要In this paper, we show that useful video representations can be learned from synthetic videos and natural images, without incorporating natural videos in the training. We propose a progression of video datasets synthesized by simple generative processes, that model a growing set of natural video properties (e.g. motion, acceleration, and shape transformations). The downstream performance of video models pre-trained on these generated datasets gradually increases with the dataset progression. A VideoMAE model pre-trained on our synthetic videos closes 97.2% of the performance gap on UCF101 action classification between training from scratch and self-supervised pre-training from natural videos, and outperforms the pre-trained model on HMDB51. Introducing crops of static images to the pre-training stage results in similar performance to UCF101 pre-training and outperforms the UCF101 pre-trained model on 11 out of 14 out-of-distribution datasets of UCF101-P. Analyzing the low-level properties of the datasets, we identify correlations between frame diversity, frame similarity to natural data, and downstream performance. Our approach provides a more controllable and transparent alternative to video data curation processes for pre-training.
语种英语
DOIarXiv:2410.24213
相关网址查看原文
出处Arxiv
收录类别PPRN.PPRN
WOS记录号PPRN:118937512
WOS类目Computer Science, Software Engineering
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/458364
专题信息科学与技术学院_本科生
通讯作者Yu, Xueyang
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Meta AI, San Francisco, CA, USA
3.Univ Calif Berkeley, Berkeley, CA, USA
推荐引用方式
GB/T 7714
Yu, Xueyang,Chen, Xinlei,Gandelsman, Yossi. Learning Video Representations without Natural Videos. 2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yu, Xueyang]的文章
[Chen, Xinlei]的文章
[Gandelsman, Yossi]的文章
百度学术
百度学术中相似的文章
[Yu, Xueyang]的文章
[Chen, Xinlei]的文章
[Gandelsman, Yossi]的文章
必应学术
必应学术中相似的文章
[Yu, Xueyang]的文章
[Chen, Xinlei]的文章
[Gandelsman, Yossi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。