ShanghaiTech University Knowledge Management System
Self-supervised neural network for Patlak-based parametric imaging in dynamic [18F]FDG total-body PET | |
2024-12-01 | |
发表期刊 | EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING (IF:8.6[JCR-2023],8.2[5-Year]) |
ISSN | 1619-7070 |
EISSN | 1619-7089 |
卷号 | 52期号:4页码:1436-1447 |
发表状态 | 已发表 |
DOI | 10.1007/s00259-024-07008-x |
摘要 | Purpose The objective of this study is to generate reliable K-i parametric images from a shortened [F-18]FDG total-body PET for clinical applications using a self-supervised neural network algorithm. Methods We proposed a self-supervised neural network algorithm with Patlak graphical analysis (SN-Patlak) to generate K-i images from shortened dynamic [F-18]FDG PET without 60-min full-dynamic PET-based training. The algorithm deeply integrates neural network architecture with a Patlak method, employing the fitting error of the Patlak plot as the neural network's loss function. As the 0-60 min blood time activity curve (TAC) required by the standard Patlak plot is unobtainable from shortened dynamic PET scans, a population-based "normalized time" (integral-to-instantaneous blood concentration ratio) was used for the linear fitting of Patlak plot of t* to 60 min, and the modified Patlak plot equation was then incorporated into the neural network. K-i images were generated by minimizing the difference between the input layer (measured tissue-to-blood concentration ratios) and the output layer (predicted tissue-to-blood concentration ratios). The effects of t* (20 to 50 min post injection) on the K-i images generated from the SN-Patlak and standard Patlak was evaluated using the normalized mean square error (NMSE), and Pearson's correlation coefficient (Pearson's r). Results The K-i images generated by the SN-Patlak are robust to the dynamic PET scan duration, and the K-i images generated by the SN-Patlak from just a 10-minute (50-60 min post-injection) dynamic [F-18]FDG total-body PET scan are comparable to those generated by the standard Patlak method from 40-min (20-60 min post injection) with NMSE = 0.15 +/- 0.03 and Pearson's r = 0.93 +/- 0.01. Conclusions The SN-Patlak parametric imaging algorithm is robust and reliable for quantification of 10-min dynamic [F-18]FDG total-body PET. |
关键词 | [F-18]FDG Total-body PET Parametric image Patlak plot Self-supervised neural network |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001369148900001 |
出版者 | SPRINGER |
EI入藏号 | 20245017515918 |
EI主题词 | Mean square error |
EI分类号 | 101.1 ; 1101 ; 1106.3.1 ; 1106.8 ; 1202.2 ; 746 Imaging Techniques |
原始文献类型 | Article in Press |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/458300 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 |
通讯作者 | Luo, Gongning; Wang, Kuanquan; Zhou, Yun |
作者单位 | 1.Harbin Inst Technol, Fac Comp, Harbin, Peoples R China 2.United Imaging Healthcare Technol Grp Co Ltd, Shanghai, Peoples R China 3.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 4.Shanghai Jiao Tong Univ, Inst Biomed Mfg & Life Qual Engn, Sch Mech Engn, Shanghai, Peoples R China |
通讯作者单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Gu, Wenjian,Zhu, Zhanshi,Liu, Ze,et al. Self-supervised neural network for Patlak-based parametric imaging in dynamic [18F]FDG total-body PET[J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING,2024,52(4):1436-1447. |
APA | Gu, Wenjian.,Zhu, Zhanshi.,Liu, Ze.,Wang, Yihan.,Li, Yanxiao.,...&Zhou, Yun.(2024).Self-supervised neural network for Patlak-based parametric imaging in dynamic [18F]FDG total-body PET.EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING,52(4),1436-1447. |
MLA | Gu, Wenjian,et al."Self-supervised neural network for Patlak-based parametric imaging in dynamic [18F]FDG total-body PET".EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 52.4(2024):1436-1447. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。