Self-supervised neural network for Patlak-based parametric imaging in dynamic [18F]FDG total-body PET
2024-12-01
发表期刊EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING (IF:8.6[JCR-2023],8.2[5-Year])
ISSN1619-7070
EISSN1619-7089
卷号52期号:4页码:1436-1447
发表状态已发表
DOI10.1007/s00259-024-07008-x
摘要

Purpose The objective of this study is to generate reliable K-i parametric images from a shortened [F-18]FDG total-body PET for clinical applications using a self-supervised neural network algorithm. Methods We proposed a self-supervised neural network algorithm with Patlak graphical analysis (SN-Patlak) to generate K-i images from shortened dynamic [F-18]FDG PET without 60-min full-dynamic PET-based training. The algorithm deeply integrates neural network architecture with a Patlak method, employing the fitting error of the Patlak plot as the neural network's loss function. As the 0-60 min blood time activity curve (TAC) required by the standard Patlak plot is unobtainable from shortened dynamic PET scans, a population-based "normalized time" (integral-to-instantaneous blood concentration ratio) was used for the linear fitting of Patlak plot of t* to 60 min, and the modified Patlak plot equation was then incorporated into the neural network. K-i images were generated by minimizing the difference between the input layer (measured tissue-to-blood concentration ratios) and the output layer (predicted tissue-to-blood concentration ratios). The effects of t* (20 to 50 min post injection) on the K-i images generated from the SN-Patlak and standard Patlak was evaluated using the normalized mean square error (NMSE), and Pearson's correlation coefficient (Pearson's r). Results The K-i images generated by the SN-Patlak are robust to the dynamic PET scan duration, and the K-i images generated by the SN-Patlak from just a 10-minute (50-60 min post-injection) dynamic [F-18]FDG total-body PET scan are comparable to those generated by the standard Patlak method from 40-min (20-60 min post injection) with NMSE = 0.15 +/- 0.03 and Pearson's r = 0.93 +/- 0.01. Conclusions The SN-Patlak parametric imaging algorithm is robust and reliable for quantification of 10-min dynamic [F-18]FDG total-body PET.

关键词[F-18]FDG Total-body PET Parametric image Patlak plot Self-supervised neural network
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China[
WOS研究方向Radiology, Nuclear Medicine & Medical Imaging
WOS类目Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001369148900001
出版者SPRINGER
EI入藏号20245017515918
EI主题词Mean square error
EI分类号101.1 ; 1101 ; 1106.3.1 ; 1106.8 ; 1202.2 ; 746 Imaging Techniques
原始文献类型Article in Press
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/458300
专题生物医学工程学院
信息科学与技术学院_硕士生
通讯作者Luo, Gongning; Wang, Kuanquan; Zhou, Yun
作者单位
1.Harbin Inst Technol, Fac Comp, Harbin, Peoples R China
2.United Imaging Healthcare Technol Grp Co Ltd, Shanghai, Peoples R China
3.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
4.Shanghai Jiao Tong Univ, Inst Biomed Mfg & Life Qual Engn, Sch Mech Engn, Shanghai, Peoples R China
通讯作者单位生物医学工程学院
推荐引用方式
GB/T 7714
Gu, Wenjian,Zhu, Zhanshi,Liu, Ze,et al. Self-supervised neural network for Patlak-based parametric imaging in dynamic [18F]FDG total-body PET[J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING,2024,52(4):1436-1447.
APA Gu, Wenjian.,Zhu, Zhanshi.,Liu, Ze.,Wang, Yihan.,Li, Yanxiao.,...&Zhou, Yun.(2024).Self-supervised neural network for Patlak-based parametric imaging in dynamic [18F]FDG total-body PET.EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING,52(4),1436-1447.
MLA Gu, Wenjian,et al."Self-supervised neural network for Patlak-based parametric imaging in dynamic [18F]FDG total-body PET".EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 52.4(2024):1436-1447.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Gu, Wenjian]的文章
[Zhu, Zhanshi]的文章
[Liu, Ze]的文章
百度学术
百度学术中相似的文章
[Gu, Wenjian]的文章
[Zhu, Zhanshi]的文章
[Liu, Ze]的文章
必应学术
必应学术中相似的文章
[Gu, Wenjian]的文章
[Zhu, Zhanshi]的文章
[Liu, Ze]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。