消息
×
loading..
Discriminative-Guided Diffusion-Based Self-supervised Monocular Depth Estimation
2025
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号15036 LNCS
页码328-342
发表状态已发表
DOI10.1007/978-981-97-8508-7_23
摘要Self-supervised monocular depth estimation is a critical task in computer vision. Existing methods can be typically categorized into discriminative-based and generative-based methods according to different data modeling approaches. Discriminative-based methods are distinguished by high accuracy, while generative-based methods are notable for superior robustness. Given that images captured in real-world scenarios are inevitably influenced by various external factors, it is essential to develop a robust and accurate depth estimation algorithm. However, there is limited research on the balance of robustness and accuracy by exploring the interactions between discriminative and generative networks. We propose a generative diffusion-based self-supervised monocular depth estimation algorithm guided by discriminative networks and incorporate a depth interaction constraint. We utilize discriminative networks to optimize image-guided information for the denoising process within the diffusion model. This approach seamlessly combines great robustness with high accuracy. Additionally, to reduce the impact of low texture regions on the reprojection photometric loss, we design a texture-aware discriminatory mask module. This module strengthens the constraint capability of the photometric consistency. We conduct experiments on the KITTI and Make3D datasets. The results demonstrate that our method successfully balances accuracy and robustness. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
关键词Generative adversarial networks Image denoising Semi-supervised learning Critical tasks Depth Estimation Diffusion model Discriminative networks Estimation algorithm High-accuracy Modeling approach Monocular depth estimation Photometrics Real-world scenario
会议名称7th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2024
出版地152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
会议地点Urumqi, China
会议日期October 18, 2024 - October 20, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Science and Technology Major Project from Minister of Science and Technology, China[2018AAA0103100] ; National Natural Science Foundation of China[62303441] ; Youth Innovation Promotion Association, Chinese Academy of Sciences[2021233] ; Shanghai Academic Research Leader[22XD1424500]
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001416888200023
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20244717397750
EI主题词Self-supervised learning
EISSN1611-3349
EI分类号1101.2 ; 1101.2.1 ; 1106.3.1 ; 716.1 Information Theory and Signal Processing
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/455185
专题信息科学与技术学院
信息科学与技术学院_特聘教授组_张晓林组
信息科学与技术学院_硕士生
通讯作者Zhu, Dongchen
作者单位
1.Bionic Vision System Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai; 200050, China;
2.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China;
3.University of Chinese Academy of Sciences, Beijing; 100049, China;
4.University of Science and Technology of China, Anhui, Hefei; 230027, China
第一作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liu, Runze,Zhang, Guanghui,Zhu, Dongchen,et al. Discriminative-Guided Diffusion-Based Self-supervised Monocular Depth Estimation[C]. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE:Springer Science and Business Media Deutschland GmbH,2025:328-342.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Runze]的文章
[Zhang, Guanghui]的文章
[Zhu, Dongchen]的文章
百度学术
百度学术中相似的文章
[Liu, Runze]的文章
[Zhang, Guanghui]的文章
[Zhu, Dongchen]的文章
必应学术
必应学术中相似的文章
[Liu, Runze]的文章
[Zhang, Guanghui]的文章
[Zhu, Dongchen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。