Automated Contrastive Learning Strategy Search for Time Series
2024-10-21
会议录名称INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, PROCEEDINGS
ISSN2155-0751
页码4612-4620
DOI10.1145/3627673.3680086
摘要In recent years, Contrastive Learning (CL) has become a predominant representation learning paradigm for time series. Most existing methods manually build specific CL Strategies (CLS) by human heuristics for certain datasets and tasks. However, manually developing CLS usually requires excessive prior knowledge about the data, and massive experiments to determine the detailed CL configurations. In this paper, we present an Automated Machine Learning (AutoML) practice at Microsoft, which automatically learns CLS for time series datasets and tasks, namely Automated Contrastive Learning (AutoCL). We first construct a principled search space of size over 3 × 1012, covering data augmentation, embedding transformation, contrastive pair construction, and contrastive losses. Further, we introduce an efficient reinforcement learning algorithm, which optimizes CLS from the performance on the validation tasks, to obtain effective CLS within the space. Experimental results on various real-world datasets demonstrate that AutoCL could automatically find the suitable CLS for the given dataset and task. From the candidate CLS found by AutoCL on several public datasets/tasks, we compose a transferable Generally Good Strategy (GGS), which has a strong performance for other datasets. We also provide empirical analysis as a guide for the future design of CLS. © 2024 ACM.
会议录编者/会议主办者ACM SIGIR ; ACM SIGWEB
关键词Adversarial machine learning Federated learning Reinforcement learning Automated machine learning Automated machines Learn+ Learning paradigms Learning strategy Machine-learning MicroSoft Performance Prior-knowledge Times series
会议名称33rd ACM International Conference on Information and Knowledge Management, CIKM 2024
会议地点Boise, ID, United states
会议日期October 21, 2024 - October 25, 2024
URL查看原文
收录类别EI
语种英语
出版者Association for Computing Machinery
EI入藏号20244817429678
EI主题词Contrastive Learning
EI分类号1101.2
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/455183
专题信息科学与技术学院_PI研究组_任侃组
通讯作者Ren, Kan
作者单位
1.University of Illinois at Urbana-Champaign, Champaign; IL, United States;
2.Microsoft Research Asia, Shanghai, China;
3.Ruijin Hospital, Shanghai, China;
4.ShanghaiTech University, Shanghai, China
通讯作者单位上海科技大学
推荐引用方式
GB/T 7714
Jing, Baoyu,Wang, Yansen,Sui, Guoxin,et al. Automated Contrastive Learning Strategy Search for Time Series[C]//ACM SIGIR, ACM SIGWEB:Association for Computing Machinery,2024:4612-4620.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jing, Baoyu]的文章
[Wang, Yansen]的文章
[Sui, Guoxin]的文章
百度学术
百度学术中相似的文章
[Jing, Baoyu]的文章
[Wang, Yansen]的文章
[Sui, Guoxin]的文章
必应学术
必应学术中相似的文章
[Jing, Baoyu]的文章
[Wang, Yansen]的文章
[Sui, Guoxin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3627673.3680086.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。