Scalable Uplink Signal Detection in C-RANs via Randomized Gaussian Message Passing
2017-08-01
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1558-2248
卷号16期号:8
发表状态已发表
DOI10.1109/TWC.2017.2706680
摘要Cloud radio access network (C-RAN) is a promising architecture for unprecedented capacity enhancement in next-generation wireless networks thanks to the centralization and virtualization of base station processing. However, centralized signal processing in C-RANs involves high computational complexity that quickly becomes unaffordable when the network grows to a huge size. First, this paper endeavors to design a scalable uplink signal detection algorithm, in the sense that both the complexity per unit network area and the total computation time remain constant when the network size grows. To this end, we formulate the signal detection in C-RAN as an inference problem over a bipartite random geometric graph. By passing messages among neighboring nodes, message passing (a.k.a. belief propagation) provides an efficient way to solve the inference problem over a sparse graph. However, the traditional message-passing algorithm is not guaranteed to converge, because the corresponding bipartite random geometric graph is locally dense and contains many short loops. As a major contribution of this paper, we propose a randomized Gaussian message passing (RGMP) algorithm to improve the convergence. Instead of exchanging messages simultaneously or in a fixed order, we propose to exchange messages asynchronously in a random order. The proposed RGMP algorithm demonstrates significantly better convergence performance than conventional message passing. The randomness of the message updating schedule also simplifies the analysis, and allows the derivation of the convergence conditions for the RGMP algorithm. In addition, we generalize the RGMP algorithm to a blockwise RGMP (B-RGMP) algorithm, which allows parallel implementation. The average computation time of B-RGMP remains constant when the network size increases.
URL查看原文
收录类别SCI ; EI
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/4526
专题信息科学与技术学院
信息科学与技术学院_PI研究组_袁晓军组
作者单位
1.Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong
2.National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China
3.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
4.Institute of Network Coding (Shenzhen), Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
推荐引用方式
GB/T 7714
Congmin Fan,Xiaojun Yuan,Ying Jun Zhang. Scalable Uplink Signal Detection in C-RANs via Randomized Gaussian Message Passing[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2017,16(8).
APA Congmin Fan,Xiaojun Yuan,&Ying Jun Zhang.(2017).Scalable Uplink Signal Detection in C-RANs via Randomized Gaussian Message Passing.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,16(8).
MLA Congmin Fan,et al."Scalable Uplink Signal Detection in C-RANs via Randomized Gaussian Message Passing".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 16.8(2017).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Congmin Fan]的文章
[Xiaojun Yuan]的文章
[Ying Jun Zhang]的文章
百度学术
百度学术中相似的文章
[Congmin Fan]的文章
[Xiaojun Yuan]的文章
[Ying Jun Zhang]的文章
必应学术
必应学术中相似的文章
[Congmin Fan]的文章
[Xiaojun Yuan]的文章
[Ying Jun Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TWC.2017.2706680.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。