消息
×
loading..
Content-Aware Radiance Fields: Aligning Model Complexity with Scene Intricacy Through Learned Bitwidth Quantization
2024-10-25
状态已发表
摘要The recent popular radiance field models, exemplified by Neural Radiance Fields (NeRF), Instant-NGP and 3D Gaussian Splat?ting, are designed to represent 3D content by that training models for each individual scene. This unique characteristic of scene representation and per-scene training distinguishes radiance field models from other neural models, because complex scenes necessitate models with higher representational capacity and vice versa. In this paper, we propose content?aware radiance fields, aligning the model complexity with the scene intricacies through Adversarial Content-Aware Quantization (A-CAQ). Specifically, we make the bitwidth of parameters differentiable and train?able, tailored to the unique characteristics of specific scenes and requirements. The proposed framework has been assessed on Instant-NGP, a well-known NeRF variant and evaluated using various datasets. Experimental results demonstrate a notable reduction in computational complexity, while preserving the requisite reconstruction and rendering quality, making it beneficial for practical deployment of radiance fields models.
关键词Radiance fields Content-aware Quantization Model complexity
语种英语
DOIarXiv:2410.19483
相关网址查看原文
出处Arxiv
收录类别PPRN.PPRN
WOS记录号PPRN:118852028
WOS类目Computer Science, Software Engineering ; Engineering, Electrical& Electronic
资助项目Central Guided Local Science and Technology Foundation of China[YDZX20223100001001]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/452399
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_PI研究组_虞晶怡组
通讯作者Lou, Xin
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
3.Human Machine Collaborat, Key Lab Intelligent Percept, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Liu, Weihang,Zheng, Xue Xian,Yu, Jingyi,et al. Content-Aware Radiance Fields: Aligning Model Complexity with Scene Intricacy Through Learned Bitwidth Quantization. 2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Weihang]的文章
[Zheng, Xue Xian]的文章
[Yu, Jingyi]的文章
百度学术
百度学术中相似的文章
[Liu, Weihang]的文章
[Zheng, Xue Xian]的文章
[Yu, Jingyi]的文章
必应学术
必应学术中相似的文章
[Liu, Weihang]的文章
[Zheng, Xue Xian]的文章
[Yu, Jingyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。