Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks
2017-09
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (IF:7.5[JCR-2023],7.6[5-Year])
ISSN0196-2892
EISSN1558-0644
卷号55期号:9页码:5407-5423
发表状态已发表
DOI10.1109/TGRS.2017.2707528
摘要

Land cover change monitoring is an important task from the perspective of regional resource monitoring, disaster management, land development, and environmental planning. In this paper, we analyze imagery data from remote sensing satellites to detect forest cover changes over a period of 29 years (1987-2015). Since the original data are severely incomplete and contaminated with artifacts, we first devise a spatiotemporal inpainting mechanism to recover the missing surface reflectance information. The spatial filling process makes use of the available data of the nearby temporal instances followed by a sparse encoding-based reconstruction. We formulate the change detection task as a region classification problem. We build a multiresolution profile (MRP) of the target area and generate a candidate set of bounding-box proposals that enclose potential change regions. In contrast to existing methods that use handcrafted features, we automatically learn region representations using a deep neural network in a data-driven fashion. Based on these highly discriminative representations, we determine forest changes and predict their onset and offset timings by labeling the candidate set of proposals. Our approach achieves the state-of-the-art average patch classification rate of 91.6% (an improvement of similar to 16%) and the mean onset/offset prediction error of 4.9 months (an error reduction of five months) compared with a strong baseline. We also qualitatively analyze the detected changes in the unlabeled image regions, which demonstrate that the proposed forest change detection approach is scalable to new regions.

关键词Change Detection Deep Learning Image Inpainting Multitemporal Spectral Data Remote Sensing
URL查看原文
收录类别SCI ; EI
语种英语
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000408346600046
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20172703894155
EI主题词Deep learning ; Disaster prevention ; Disasters ; Forestry ; Remote sensing ; Signal detection
WOS关键词LAND-COVER CHANGE ; CLOUD REMOVAL ; SHADOW DETECTION ; BRDF CORRECTION ; CLASSIFICATION ; REGRESSION ; FREQUENCY ; TRENDS ; FUSION ; MODEL
原始文献类型Article
通讯作者Khan, Salman H.
来源库IEEE
引用统计
被引频次:166[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/4507
专题信息科学与技术学院_PI研究组_何旭明组
作者单位
1.The Australian National University, Canberra, ACT, Australia
2.ShanghaiTech University, Shanghai, China
3.The University of Western Australia, Crawley, WA, Australia
推荐引用方式
GB/T 7714
Salman H. Khan,Xuming He,Fatih Porikli,et al. Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2017,55(9):5407-5423.
APA Salman H. Khan,Xuming He,Fatih Porikli,&Mohammed Bennamoun.(2017).Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,55(9),5407-5423.
MLA Salman H. Khan,et al."Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 55.9(2017):5407-5423.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Salman H. Khan]的文章
[Xuming He]的文章
[Fatih Porikli]的文章
百度学术
百度学术中相似的文章
[Salman H. Khan]的文章
[Xuming He]的文章
[Fatih Porikli]的文章
必应学术
必应学术中相似的文章
[Salman H. Khan]的文章
[Xuming He]的文章
[Fatih Porikli]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 07948741.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。