ShanghaiTech University Knowledge Management System
Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks | |
2017-09 | |
发表期刊 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (IF:7.5[JCR-2023],7.6[5-Year]) |
ISSN | 0196-2892 |
EISSN | 1558-0644 |
卷号 | 55期号:9页码:5407-5423 |
发表状态 | 已发表 |
DOI | 10.1109/TGRS.2017.2707528 |
摘要 | Land cover change monitoring is an important task from the perspective of regional resource monitoring, disaster management, land development, and environmental planning. In this paper, we analyze imagery data from remote sensing satellites to detect forest cover changes over a period of 29 years (1987-2015). Since the original data are severely incomplete and contaminated with artifacts, we first devise a spatiotemporal inpainting mechanism to recover the missing surface reflectance information. The spatial filling process makes use of the available data of the nearby temporal instances followed by a sparse encoding-based reconstruction. We formulate the change detection task as a region classification problem. We build a multiresolution profile (MRP) of the target area and generate a candidate set of bounding-box proposals that enclose potential change regions. In contrast to existing methods that use handcrafted features, we automatically learn region representations using a deep neural network in a data-driven fashion. Based on these highly discriminative representations, we determine forest changes and predict their onset and offset timings by labeling the candidate set of proposals. Our approach achieves the state-of-the-art average patch classification rate of 91.6% (an improvement of similar to 16%) and the mean onset/offset prediction error of 4.9 months (an error reduction of five months) compared with a strong baseline. We also qualitatively analyze the detected changes in the unlabeled image regions, which demonstrate that the proposed forest change detection approach is scalable to new regions. |
关键词 | Change Detection Deep Learning Image Inpainting Multitemporal Spectral Data Remote Sensing |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000408346600046 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20172703894155 |
EI主题词 | Deep learning ; Disaster prevention ; Disasters ; Forestry ; Remote sensing ; Signal detection |
WOS关键词 | LAND-COVER CHANGE ; CLOUD REMOVAL ; SHADOW DETECTION ; BRDF CORRECTION ; CLASSIFICATION ; REGRESSION ; FREQUENCY ; TRENDS ; FUSION ; MODEL |
原始文献类型 | Article |
通讯作者 | Khan, Salman H. |
来源库 | IEEE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/4507 |
专题 | 信息科学与技术学院_PI研究组_何旭明组 |
作者单位 | 1.The Australian National University, Canberra, ACT, Australia 2.ShanghaiTech University, Shanghai, China 3.The University of Western Australia, Crawley, WA, Australia |
推荐引用方式 GB/T 7714 | Salman H. Khan,Xuming He,Fatih Porikli,et al. Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2017,55(9):5407-5423. |
APA | Salman H. Khan,Xuming He,Fatih Porikli,&Mohammed Bennamoun.(2017).Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,55(9),5407-5423. |
MLA | Salman H. Khan,et al."Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 55.9(2017):5407-5423. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。