Deep learning-based scrubbing of fMRI data and its applications on delineating infant brain functional development trajectories
2024-05
会议录名称2024 ISMRM & ISMRT ANNUAL MEETING & EXHIBITION
发表状态已发表
摘要

Noise and artifacts significantly corrupt fMRI data. We present a deep learning-based Automatic fMRI Scrubbing via Graph Attention (ASGA), to perform fMRI data “scrubbing” by automatically identifying and removing contaminated volumes. To achieve this, we firstly design an easy-to-implement carpet plot-based labeling tool for human labelling, which is fed to ASGA model training. By applying ASGA to two large-cohort studies (BCP and CBCP), our method effectively removed noise-contaminated volumes without human interference. It also has a significant potential in enhancing research outcomes for challenging populations like children and older subjects whose data prone to have noise, facilitating reliable fMRI studies.

语种英语
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449615
专题信息科学与技术学院_硕士生
通讯作者Han Zhang
作者单位
上海科技大学
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Haifeng Tang,Yan Liang,Xinyi Cai,et al. Deep learning-based scrubbing of fMRI data and its applications on delineating infant brain functional development trajectories[C],2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Haifeng Tang]的文章
[Yan Liang]的文章
[Xinyi Cai]的文章
百度学术
百度学术中相似的文章
[Haifeng Tang]的文章
[Yan Liang]的文章
[Xinyi Cai]的文章
必应学术
必应学术中相似的文章
[Haifeng Tang]的文章
[Yan Liang]的文章
[Xinyi Cai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。