ShanghaiTech University Knowledge Management System
Deep learning-based scrubbing of fMRI data and its applications on delineating infant brain functional development trajectories | |
2024-05 | |
会议录名称 | 2024 ISMRM & ISMRT ANNUAL MEETING & EXHIBITION |
发表状态 | 已发表 |
摘要 | Noise and artifacts significantly corrupt fMRI data. We present a deep learning-based Automatic fMRI Scrubbing via Graph Attention (ASGA), to perform fMRI data “scrubbing” by automatically identifying and removing contaminated volumes. To achieve this, we firstly design an easy-to-implement carpet plot-based labeling tool for human labelling, which is fed to ASGA model training. By applying ASGA to two large-cohort studies (BCP and CBCP), our method effectively removed noise-contaminated volumes without human interference. It also has a significant potential in enhancing research outcomes for challenging populations like children and older subjects whose data prone to have noise, facilitating reliable fMRI studies. |
语种 | 英语 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449615 |
专题 | 信息科学与技术学院_硕士生 |
通讯作者 | Han Zhang |
作者单位 | 上海科技大学 |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Haifeng Tang,Yan Liang,Xinyi Cai,et al. Deep learning-based scrubbing of fMRI data and its applications on delineating infant brain functional development trajectories[C],2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。