ShanghaiTech University Knowledge Management System
MoCo-Diff: Adaptive Conditional Prior on Diffusion Network for MRI Motion Correction | |
2024-10-03 | |
会议录名称 | INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION |
ISSN | 0302-9743 |
卷号 | 15006 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-72089-5_39 |
摘要 | Magnetic Resonance Image (MRI) is a powerful medical imaging modality with non-ionizing radiation. However, due to its long scanning time, patient movement is prone to occur during acquisition. Severe motions can significantly degrade the image quality and make the images non-diagnostic. This paper introduces MoCo-Diff, a novel two-stage deep learning framework designed to correct the motion artifacts in 3D MRI volumes. In the first stage, we exploit a novel attention mechanism using shift window-based transformers in both the in-slice and through-slice directions to effectively remove the motion artifacts. In the second stage, the initially-corrected image serves as the prior for realistic MR image restoration. This stage incorporates the pre-trained Stable Diffusion to leverage its robust generative capability and the ControlUNet to fine-tune the diffusion model with the assistance of the prior. Moreover, we introduce an uncertainty predictor to assess the reliability of the motion-corrected images, which not only visually hints the motion correction errors but also enhances motion correction quality by trimming the prior with dynamic weights. Our experiments illustrate MoCo-Diff's superiority over state-of-the-art approaches in removing motion artifacts and retaining anatomical details across different levels of motion severity. The code is available at https://github.com/fengza/MoCo-Diff. |
关键词 | Motion correction Prior-conditioned diffusion model Dual branch transformer Magnetic resonance imaging |
会议名称 | 27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Palmeraie Conf Ctr,Marrakesh,MOROCCO |
会议日期 | OCT 06-10, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | STI 2030-Major Projects[2021ZD0200514] ; National Natural Science Foundation of China[62131015] |
WOS研究方向 | Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001342231200039 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449214 |
专题 | 生物医学工程学院_博士生 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_王乾组 生物医学工程学院_PI研究组_胡鹏组 |
通讯作者 | Qian Wang |
作者单位 | 1.School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China 2.Shanghai Clinical Research and Trial Center, Shanghai, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Feng Li,Zijian Zhou,Yu Fang,et al. MoCo-Diff: Adaptive Conditional Prior on Diffusion Network for MRI Motion Correction[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Feng Li]的文章 |
[Zijian Zhou]的文章 |
[Yu Fang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Feng Li]的文章 |
[Zijian Zhou]的文章 |
[Yu Fang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Feng Li]的文章 |
[Zijian Zhou]的文章 |
[Yu Fang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。