MoCo-Diff: Adaptive Conditional Prior on Diffusion Network for MRI Motion Correction
2024-10-03
会议录名称INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION
ISSN0302-9743
卷号15006
发表状态已发表
DOI10.1007/978-3-031-72089-5_39
摘要Magnetic Resonance Image (MRI) is a powerful medical imaging modality with non-ionizing radiation. However, due to its long scanning time, patient movement is prone to occur during acquisition. Severe motions can significantly degrade the image quality and make the images non-diagnostic. This paper introduces MoCo-Diff, a novel two-stage deep learning framework designed to correct the motion artifacts in 3D MRI volumes. In the first stage, we exploit a novel attention mechanism using shift window-based transformers in both the in-slice and through-slice directions to effectively remove the motion artifacts. In the second stage, the initially-corrected image serves as the prior for realistic MR image restoration. This stage incorporates the pre-trained Stable Diffusion to leverage its robust generative capability and the ControlUNet to fine-tune the diffusion model with the assistance of the prior. Moreover, we introduce an uncertainty predictor to assess the reliability of the motion-corrected images, which not only visually hints the motion correction errors but also enhances motion correction quality by trimming the prior with dynamic weights. Our experiments illustrate MoCo-Diff's superiority over state-of-the-art approaches in removing motion artifacts and retaining anatomical details across different levels of motion severity. The code is available at https://github.com/fengza/MoCo-Diff.
关键词Motion correction Prior-conditioned diffusion model Dual branch transformer Magnetic resonance imaging
会议名称27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Palmeraie Conf Ctr,Marrakesh,MOROCCO
会议日期OCT 06-10, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目STI 2030-Major Projects[2021ZD0200514] ; National Natural Science Foundation of China[62131015]
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001342231200039
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/449214
专题生物医学工程学院_博士生
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_王乾组
生物医学工程学院_PI研究组_胡鹏组
通讯作者Qian Wang
作者单位
1.School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
2.Shanghai Clinical Research and Trial Center, Shanghai, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Feng Li,Zijian Zhou,Yu Fang,et al. MoCo-Diff: Adaptive Conditional Prior on Diffusion Network for MRI Motion Correction[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Feng Li]的文章
[Zijian Zhou]的文章
[Yu Fang]的文章
百度学术
百度学术中相似的文章
[Feng Li]的文章
[Zijian Zhou]的文章
[Yu Fang]的文章
必应学术
必应学术中相似的文章
[Feng Li]的文章
[Zijian Zhou]的文章
[Yu Fang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: miccai24_lifeng.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。