| |||||||
ShanghaiTech University Knowledge Management System
Automatic segmentation and diameter measurement of deep medullary veins | |
2024-10-01 | |
发表期刊 | MAGNETIC RESONANCE IN MEDICINE (IF:3.0[JCR-2023],3.3[5-Year]) |
ISSN | 0740-3194 |
EISSN | 1522-2594 |
卷号 | 93期号:3页码:1380-1393 |
发表状态 | 已发表 |
DOI | 10.1002/mrm.30341 |
摘要 | PurposeAs one of the pathogenic factors of cerebral small vessel disease, venous collagenosis may result in the occlusion or stenosis of deep medullary veins (DMVs). Although numerous DMVs can be observed in susceptibility-weighted MRI images, their diameters are usually smaller than the MRI resolution, making it difficult to segment them and quantify their sizes. We aim to automatically segment DMVs and measure their diameters from gradient-echo images.MethodsA neural network model was trained for DMV segmentation based on the gradient-echo magnitude and phase images of 20 subjects at 7 T. The diameters of DMVs were obtained by fitting measured complex images with model images that accounted for the DMV-induced magnetic field and point spread function. A phantom study with graphite rods of different diameters was conducted to validate the proposed method. Simulation was carried out to evaluate the voxel-size dependence of measurement accuracy for a typical DMV size.ResultsThe automatically segmented DMV masks had Dice similarity coefficients of 0.68 +/- 0.03 (voxel level) and 0.83 +/- 0.04 (cluster level). The fitted graphite-rod diameters closely matched their true values. In simulation, the fitted diameters closely matched the true value when voxel size was <= 0.45 mm, and 92.2% of DMVs had diameters between 90 mu m and 200 mu m with a peak at about 120 mu m, which agreed well with an earlier ex vivo report.ConclusionThe proposed methods enabled efficient and quantitative study of DMVs, which may help illuminate the role of DMVs in the etiopathogenesis of cerebral small vessel disease. |
关键词 | automatic segmentation cerebral small vessel disease deep medullary vein venous diameter measurement |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Center for Advancing Translational Sciences/National Institutes of Health[2KR1332008] ; null[5R21NS095027-02] |
WOS研究方向 | Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001345201500001 |
出版者 | WILEY |
EI入藏号 | 20244517321532 |
EI主题词 | Optical transfer function |
EI分类号 | 1106.3.1 ; 214 ; 709 Electrical Engineering, General ; 741.1/Optics ; 746 Imaging Techniques ; 941.4 Optical Variables Measurements ; 941.5¬≠ ; 942.1.7 |
原始文献类型 | Article in Press |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/446052 |
专题 | 生物医学工程学院 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_宗小鹏组 |
通讯作者 | Zong, Xiaopeng |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China 2.Massachusetts Gen Hosp, Boston, MA USA 3.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Zhou, Yichen,Zhao, Bingbing,Moore, Julia,et al. Automatic segmentation and diameter measurement of deep medullary veins[J]. MAGNETIC RESONANCE IN MEDICINE,2024,93(3):1380-1393. |
APA | Zhou, Yichen,Zhao, Bingbing,Moore, Julia,&Zong, Xiaopeng.(2024).Automatic segmentation and diameter measurement of deep medullary veins.MAGNETIC RESONANCE IN MEDICINE,93(3),1380-1393. |
MLA | Zhou, Yichen,et al."Automatic segmentation and diameter measurement of deep medullary veins".MAGNETIC RESONANCE IN MEDICINE 93.3(2024):1380-1393. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。