消息
×
loading..
Automatic segmentation and diameter measurement of deep medullary veins
2024-10-01
发表期刊MAGNETIC RESONANCE IN MEDICINE (IF:3.0[JCR-2023],3.3[5-Year])
ISSN0740-3194
EISSN1522-2594
卷号93期号:3页码:1380-1393
发表状态已发表
DOI10.1002/mrm.30341
摘要

PurposeAs one of the pathogenic factors of cerebral small vessel disease, venous collagenosis may result in the occlusion or stenosis of deep medullary veins (DMVs). Although numerous DMVs can be observed in susceptibility-weighted MRI images, their diameters are usually smaller than the MRI resolution, making it difficult to segment them and quantify their sizes. We aim to automatically segment DMVs and measure their diameters from gradient-echo images.MethodsA neural network model was trained for DMV segmentation based on the gradient-echo magnitude and phase images of 20 subjects at 7 T. The diameters of DMVs were obtained by fitting measured complex images with model images that accounted for the DMV-induced magnetic field and point spread function. A phantom study with graphite rods of different diameters was conducted to validate the proposed method. Simulation was carried out to evaluate the voxel-size dependence of measurement accuracy for a typical DMV size.ResultsThe automatically segmented DMV masks had Dice similarity coefficients of 0.68 +/- 0.03 (voxel level) and 0.83 +/- 0.04 (cluster level). The fitted graphite-rod diameters closely matched their true values. In simulation, the fitted diameters closely matched the true value when voxel size was <= 0.45 mm, and 92.2% of DMVs had diameters between 90 mu m and 200 mu m with a peak at about 120 mu m, which agreed well with an earlier ex vivo report.ConclusionThe proposed methods enabled efficient and quantitative study of DMVs, which may help illuminate the role of DMVs in the etiopathogenesis of cerebral small vessel disease.

关键词automatic segmentation cerebral small vessel disease deep medullary vein venous diameter measurement
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Center for Advancing Translational Sciences/National Institutes of Health[2KR1332008] ; null[5R21NS095027-02]
WOS研究方向Radiology, Nuclear Medicine & Medical Imaging
WOS类目Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001345201500001
出版者WILEY
EI入藏号20244517321532
EI主题词Optical transfer function
EI分类号1106.3.1 ; 214 ; 709 Electrical Engineering, General ; 741.1/Optics ; 746 Imaging Techniques ; 941.4 Optical Variables Measurements ; 941.5¬≠ ; 942.1.7
原始文献类型Article in Press
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/446052
专题生物医学工程学院
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_宗小鹏组
通讯作者Zong, Xiaopeng
作者单位
1.ShanghaiTech Univ, Sch Biomed Engn, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China
2.Massachusetts Gen Hosp, Boston, MA USA
3.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Zhou, Yichen,Zhao, Bingbing,Moore, Julia,et al. Automatic segmentation and diameter measurement of deep medullary veins[J]. MAGNETIC RESONANCE IN MEDICINE,2024,93(3):1380-1393.
APA Zhou, Yichen,Zhao, Bingbing,Moore, Julia,&Zong, Xiaopeng.(2024).Automatic segmentation and diameter measurement of deep medullary veins.MAGNETIC RESONANCE IN MEDICINE,93(3),1380-1393.
MLA Zhou, Yichen,et al."Automatic segmentation and diameter measurement of deep medullary veins".MAGNETIC RESONANCE IN MEDICINE 93.3(2024):1380-1393.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhou, Yichen]的文章
[Zhao, Bingbing]的文章
[Moore, Julia]的文章
百度学术
百度学术中相似的文章
[Zhou, Yichen]的文章
[Zhao, Bingbing]的文章
[Moore, Julia]的文章
必应学术
必应学术中相似的文章
[Zhou, Yichen]的文章
[Zhao, Bingbing]的文章
[Moore, Julia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。