Deciphering Explicit and Implicit Features for Reliable, Interpretable, and Actionable User Churn Prediction in Online Video Games
2024
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (IF:4.7[JCR-2023],5.1[5-Year])
ISSN2160-9306
EISSN1941-0506
卷号PP期号:99
发表状态已发表
DOI10.1109/TVCG.2024.3487974
摘要

The burgeoning online video game industry has sparked intense competition among providers to both expand their user base and retain existing players, particularly within social interaction genres. To anticipate player churn, there is an increasing reliance on machine learning (ML) models that focus on social interaction dynamics. However, the prevalent opacity of most ML algorithms poses a significant hurdle to their acceptance among domain experts, who often view them as “black boxes”. Despite the availability of eXplainable Artificial Intelligence (XAI) techniques capable of elucidating model decisions, their adoption in the gaming industry remains limited. This is primarily because non-technical domain experts, such as product managers and game designers, encounter substantial challenges in deciphering the “explicit” and “implicit” features embedded within computational models. This study proposes a reliable, interpretable, and actionable solution for predicting player churn by restructuring model inputs into explicit and implicit features. It explores how establishing a connection between explicit and implicit features can assist experts in understanding the underlying implicit features. Moreover, it emphasizes the necessity for XAI techniques that not only offer implementable interventions but also pinpoint the most crucial features for those interventions. Two case studies, including expert feedback and a within-subject user study, demonstrate the efficacy of our approach

关键词Churn predictions Domain experts Explainable AI Implicit features On-machines Online video Social interactions Video game industry Video-games Visual analytics
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20244517336529
EI主题词Economic and social effects
EI分类号971 Social Sciences
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/442493
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_李权组
共同第一作者Laixin Xie
作者单位
1.School of Information Science and Technology, Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, Shanghai, China
2.UX Center, Netease Games, China
3.Tencent Inc., Shenzhen, Guangdong, China
4.The Hong Kong University of Science and Technology, Hong Kong
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xiyuan Wang,Laixin Xie,He Wang,et al. Deciphering Explicit and Implicit Features for Reliable, Interpretable, and Actionable User Churn Prediction in Online Video Games[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2024,PP(99).
APA Xiyuan Wang.,Laixin Xie.,He Wang.,Xingxing Xing.,Wei Wan.,...&Quan Li.(2024).Deciphering Explicit and Implicit Features for Reliable, Interpretable, and Actionable User Churn Prediction in Online Video Games.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,PP(99).
MLA Xiyuan Wang,et al."Deciphering Explicit and Implicit Features for Reliable, Interpretable, and Actionable User Churn Prediction in Online Video Games".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS PP.99(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xiyuan Wang]的文章
[Laixin Xie]的文章
[He Wang]的文章
百度学术
百度学术中相似的文章
[Xiyuan Wang]的文章
[Laixin Xie]的文章
[He Wang]的文章
必应学术
必应学术中相似的文章
[Xiyuan Wang]的文章
[Laixin Xie]的文章
[He Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。