Decentralized Over-the-Air Federated Learning in Full-Duplex MIMO Networks
2024
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1558-2248
EISSN1558-2248
卷号PP期号:99
发表状态已发表
DOI10.1109/TWC.2024.3479769
摘要

Decentralized federated learning (FL) is capable of enabling efficient and robust collaborative model training with device-to-device (D2D) communications. However, most existing studies on decentralized FL employ half-duplex communication to achieve time-division model aggregation, which is inefficient in scenarios with massive geographically dispersed devices. To address this issue, we in this paper propose decentralized over-the-air FL (DOAFL) with full-duplex (FD) communication, where over-the-air computation (AirComp) and FD communication are fused together to enable parallel model exchange and aggregation, and antenna arrays are leveraged to suppress residual self-interference (SI). Specifically, we first conduct the convergence analysis for DOAFL to characterize the influence of the consensus error introduced by residual SI, channel fading, and receiver noise on the learning performance. Subsequently, we formulate a joint communication and computation (JC2) optimization problem with an objective to increase both the accuracy and time efficiency of the model training, followed by developing a JC2 design algorithm to efficiently optimize transceiver beamforming and computing frequencies. Simulation results verify the superiority of our proposed DOAFL in terms of training latency, residual SI suppression, and learning performance under low energy budgets.

关键词Beam forming networks Fading channels Decentralised Device-to-Device communications Full duplex communication Full-duplex Learning performance Model aggregations Model training Over the airs Over-the-air computation Self-interferences
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20244417298090
EI主题词Budget control
EI分类号716 Telecommunication ; Radar, Radio and Television ; 911 Cost and Value Engineering ; Industrial Economics ; 912.2 Management
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/439497
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhibin Wang,Yong Zhou,Yuanming Shi. Decentralized Over-the-Air Federated Learning in Full-Duplex MIMO Networks[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2024,PP(99).
APA Zhibin Wang,Yong Zhou,&Yuanming Shi.(2024).Decentralized Over-the-Air Federated Learning in Full-Duplex MIMO Networks.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,PP(99).
MLA Zhibin Wang,et al."Decentralized Over-the-Air Federated Learning in Full-Duplex MIMO Networks".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS PP.99(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhibin Wang]的文章
[Yong Zhou]的文章
[Yuanming Shi]的文章
百度学术
百度学术中相似的文章
[Zhibin Wang]的文章
[Yong Zhou]的文章
[Yuanming Shi]的文章
必应学术
必应学术中相似的文章
[Zhibin Wang]的文章
[Yong Zhou]的文章
[Yuanming Shi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。