DistillSeq: A Framework for Safety Alignment Testing in Large Language Models using Knowledge Distillation
2024-09-11
会议录名称ISSTA 2024 - PROCEEDINGS OF THE 33RD ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS
页码578-589
DOI10.1145/3650212.3680304
摘要Large Language Models (LLMs) have showcased their remarkable capabilities in diverse domains, encompassing natural language understanding, translation, and even code generation. The potential for LLMs to generate harmful content is a significant concern. This risk necessitates rigorous testing and comprehensive evaluation of LLMs to ensure safe and responsible use. However, extensive testing of LLMs requires substantial computational resources, making it an expensive endeavor. Therefore, exploring cost-saving strategies during the testing phase is crucial to balance the need for thorough evaluation with the constraints of resource availability. To address this, our approach begins by transferring the moderation knowledge from an LLM to a small model. Subsequently, we deploy two distinct strategies for generating malicious queries: one based on a syntax tree approach, and the other leveraging an LLM-based method. Finally, our approach incorporates a sequential filter-test process designed to identify test cases that are prone to eliciting toxic responses. By doing so, we significantly curtail unnecessary or unproductive interactions with LLMs, thereby streamlining the testing process. Our research evaluated the efficacy of DistillSeq across four LLMs: GPT-3.5, GPT-4.0, Vicuna-13B, and Llama-13B. In the absence of DistillSeq, the observed attack success rates on these LLMs stood at 31.5% for GPT-3.5, 21.4% for GPT-4.0, 28.3% for Vicuna-13B, and 30.9% for Llama-13B. However, upon the application of DistillSeq, these success rates notably increased to 58.5%, 50.7%, 52.5%, and 54.4%, respectively. This translated to an average escalation in attack success rate by a factor of 93.0% when compared to scenarios without the use of DistillSeq. Such findings highlight the significant enhancement DistillSeq offers in terms of reducing the time and resource investment required for effectively testing LLMs. © 2024 Owner/Author.
会议录编者/会议主办者ACM SIGSOFT ; AITO
关键词Digital elevation model Model checking Risk assessment Risk perception Automated testing Codegeneration Comprehensive evaluation Diverse domains Extensive testing Knowledge distillation Language model Large language model Natural language understanding Testing/Evaluation
会议名称33rd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2024
会议地点Vienna, Austria
会议日期September 16, 2024 - September 20, 2024
URL查看原文
收录类别EI
语种英语
出版者Association for Computing Machinery, Inc
EI入藏号20244117161099
EI分类号1102.1 ; 1106.2 ; 1106.3.1 ; 1108 ; 914.1 Accidents and Accident Prevention
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/436541
专题信息科学与技术学院_PI研究组_陈宇奇
信息科学与技术学院_硕士生
通讯作者Chen, Yuqi
作者单位
1.ShanghaiTech University, Shanghai, China;
2.Nanyang Technological University, Singapore, Singapore
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Yang, Mingke,Chen, Yuqi,Liu, Yi,et al. DistillSeq: A Framework for Safety Alignment Testing in Large Language Models using Knowledge Distillation[C]//ACM SIGSOFT, AITO:Association for Computing Machinery, Inc,2024:578-589.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Mingke]的文章
[Chen, Yuqi]的文章
[Liu, Yi]的文章
百度学术
百度学术中相似的文章
[Yang, Mingke]的文章
[Chen, Yuqi]的文章
[Liu, Yi]的文章
必应学术
必应学术中相似的文章
[Yang, Mingke]的文章
[Chen, Yuqi]的文章
[Liu, Yi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3650212.3680304.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。