ShanghaiTech University Knowledge Management System
VQGNet: An Unsupervised Defect Detection Approach for Complex Textured Steel Surfaces | |
2024-10 | |
发表期刊 | SENSORS |
ISSN | 1424-8220 |
EISSN | 1424-8220 |
卷号 | 24期号:19 |
发表状态 | 已发表 |
DOI | 10.3390/s24196252 |
摘要 | Defect detection on steel surfaces with complex textures is a critical and challenging task in the industry. The limited number of defect samples and the complexity of the annotation process pose significant challenges. Moreover, performing defect segmentation based on accurate identification further increases the task’s difficulty. To address this issue, we propose VQGNet, an unsupervised algorithm that can precisely recognize and segment defects simultaneously. A feature fusion method based on aggregated attention and a classification-aided module is proposed to segment defects by integrating different features in the original images and the anomaly maps, which direct the attention to the anomalous information instead of the irregular complex texture. The anomaly maps are generated more confidently using strategies for multi-scale feature fusion and neighbor feature aggregation. Moreover, an anomaly generation method suitable for grayscale images is introduced to facilitate the model’s learning on the anomalous samples. The refined anomaly maps and fused features are both input into the classification-aided module for the final classification and segmentation. VQGNet achieves state-of-the-art (SOTA) performance on the industrial steel dataset, with an I-AUROC of 99.6%, I-F1 of 98.8%, P-AUROC of 97.0%, and P-F1 of 80.3%. Additionally, ViT-Query demonstrates robust generalization capabilities in generating anomaly maps based on the Kolektor Surface-Defect Dataset 2. © 2024 by the authors. |
关键词 | Anomaly detection Anomalous information Defect detection Detection approach Feature fusion method Features fusions Original images Steel surface Unsupervised algorithms Unsupervised anomaly algorithm VQGNet |
收录类别 | EI |
语种 | 英语 |
出版者 | Multidisciplinary Digital Publishing Institute (MDPI) |
EI入藏号 | 20244217210107 |
EI主题词 | Image segmentation |
EI分类号 | 1106.3.1 ; 1106.6 |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/436516 |
专题 | 信息科学与技术学院_硕士生 物质科学与技术学院_硕士生 创意与艺术学院_PI研究组(P)_杨锐组 创意与艺术学院_PI研究组(P)_武颖娜组 |
共同第一作者 | Liu, Yun |
通讯作者 | Wu, Yingna |
作者单位 | Center for Adaptive System Engineering, ShanghaiTech University, Shanghai, 201210, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yu, Ronghao,Liu, Yun,Yang, Rui,et al. VQGNet: An Unsupervised Defect Detection Approach for Complex Textured Steel Surfaces[J]. SENSORS,2024,24(19). |
APA | Yu, Ronghao,Liu, Yun,Yang, Rui,&Wu, Yingna.(2024).VQGNet: An Unsupervised Defect Detection Approach for Complex Textured Steel Surfaces.SENSORS,24(19). |
MLA | Yu, Ronghao,et al."VQGNet: An Unsupervised Defect Detection Approach for Complex Textured Steel Surfaces".SENSORS 24.19(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yu, Ronghao]的文章 |
[Liu, Yun]的文章 |
[Yang, Rui]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yu, Ronghao]的文章 |
[Liu, Yun]的文章 |
[Yang, Rui]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yu, Ronghao]的文章 |
[Liu, Yun]的文章 |
[Yang, Rui]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。