消息
×
loading..
Denoising of Photon-Counting LiDAR Bathymetry Based on Adaptive Variable OPTICS Model and Its Accuracy Assessment
2024-09
发表期刊REMOTE SENSING (IF:4.2[JCR-2023],4.9[5-Year])
ISSN2072-4292
EISSN2072-4292
卷号16期号:18
发表状态已发表
DOI10.3390/rs16183438
摘要

Spaceborne photon-counting LiDAR holds significant potential for shallow-water bathymetry. However, the received photon data often contain substantial noise, complicating the extraction of elevation information. Currently, a denoising algorithm named ordering points to identify the clustering structure (OPTICS) draws people’s attention because of its strong performance under high background noise. However, this algorithm’s fixed input variables can lead to inaccurate photon distribution parameters in areas near the water bottom, which results in inadequate denoising in these areas, affecting bathymetric accuracy. To address this issue, an Adaptive Variable OPTICS (AV-OPTICS) model is proposed in this paper. Unlike the traditional OPTICS model with fixed input variables, the proposed model dynamically adjusts input variables based on point cloud distribution. This adjustment ensures accurate measurement of photon distribution parameters near the water bottom, thereby enhancing denoising effects in these areas and improving bathymetric accuracy. The findings indicate that, compared to traditional OPTICS methods, AV-OPTICS achieves higher (Formula presented.) -values and lower cohesions, demonstrating better denoising performance near the water bottom. Furthermore, this method achieves an average (Formula presented.) of 0.28 m and (Formula presented.) of 0.31 m, indicating better bathymetric accuracy than traditional OPTICS methods. This study provides a promising solution for shallow-water bathymetry based on photon-counting LiDAR data. © 2024 by the authors.

关键词Bathymetry Optical fibers Adaptive variable ordering point to identify the clustering structure Bathymetric method Clusterings De-noising ICESat-2/ATLAS Input variables Photon counting Photon-counting LiDAR Structure models Variables ordering
URL查看原文
收录类别SCI ; EI
语种英语
资助项目null[D040107]
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001323774500001
出版者Multidisciplinary Digital Publishing Institute (MDPI)
EI入藏号20244017136812
EI主题词Adaptive optics
EI分类号471.3 Oceanographic Techniques ; 741.1.2 Fiber Optics ; 741.1/Optics ; 942.1.7
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/430483
专题信息科学与技术学院
信息科学与技术学院_本科生
通讯作者Liang, Kun
作者单位
1.School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
2.National Key Laboratory of Multispectral Information Intelligent Processing Technology, Wuhan 430074, China
3.School of Information Science and Technology, Shanghai Tech University, Shanghai; 201210, China
推荐引用方式
GB/T 7714
Li, Peize,Xu, Yangrui,Zhao, Yanpeng,et al. Denoising of Photon-Counting LiDAR Bathymetry Based on Adaptive Variable OPTICS Model and Its Accuracy Assessment[J]. REMOTE SENSING,2024,16(18).
APA Li, Peize,Xu, Yangrui,Zhao, Yanpeng,Liang, Kun,&Si, Yuanjie.(2024).Denoising of Photon-Counting LiDAR Bathymetry Based on Adaptive Variable OPTICS Model and Its Accuracy Assessment.REMOTE SENSING,16(18).
MLA Li, Peize,et al."Denoising of Photon-Counting LiDAR Bathymetry Based on Adaptive Variable OPTICS Model and Its Accuracy Assessment".REMOTE SENSING 16.18(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Peize]的文章
[Xu, Yangrui]的文章
[Zhao, Yanpeng]的文章
百度学术
百度学术中相似的文章
[Li, Peize]的文章
[Xu, Yangrui]的文章
[Zhao, Yanpeng]的文章
必应学术
必应学术中相似的文章
[Li, Peize]的文章
[Xu, Yangrui]的文章
[Zhao, Yanpeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。