Intelligent Song Recognition via a Hollow-Microstructure-Based, Ultrasensitive Artificial Eardrum
2024-09-01
发表期刊ADVANCED SCIENCE (IF:14.3[JCR-2023],16.3[5-Year])
ISSN2198-3844
EISSN2198-3844
卷号11期号:42
发表状态已发表
DOI10.1002/advs.202405501
摘要

["Artificial ears with intelligence, which can sensitively detect sound-a variant of pressure-and generate consciousness and logical decision-making abilities, hold great promise to transform life. However, despite the emerging flexible sensors for sound detection, most success is limited to very simple phonemes, such as a couple of letters or words, probably due to the lack of device sensitivity and capability. Herein, the construction of ultrasensitive artificial eardrums enabling intelligent song recognition is reported. This strategy employs novel geometric engineering of sensing units in the soft microstructure array (to significantly reduce effective modulus) along with complex song recognition exploration leveraging machine learning algorithms. Unprecedented pressure sensitivity (6.9 x 103 kPa-1) is demonstrated in a sensor with a hollow pyramid architecture with porous slants. The integrated device exhibits unparalleled (exceeding by 1-2 orders of magnitude compared with reported benchmark samples) sound detection sensitivity, and can accurately identify 100% (for training set) and 97.7% (for test set) of a database of the segments from 77 songs varying in language, style, and singer. Overall, the results highlight the outstanding performance of the hollow-microstructure-based sensor, indicating its potential applications in human-machine interaction and wearable acoustical technologies.","Artificial eardrums with ultra-piezoresistive sensitivity are realized via geometrically engineered microstructure units and machine learning for intelligent song recognition. The advanced hollow-pyramidal-based sensor achieves unprecedented pressure sensitivity and remarkable sound detection sensitivity, capable of identifying 100% (training data) and 97.7% (test data) of 77 diverse songs, indicating potentials in human-machine interaction and wearable acoustical technologies. image"]

关键词acoustic sensor artificial eardrum hollow microstructure piezoresistive sensor song recognition
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Shanghai Pujiang Program[21PJ1400100] ; National Natural Science Foundation of China[
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号WOS:001316083900001
出版者WILEY
EI入藏号20243917082741
EI分类号751 Acoustics, Noise. Sound ; 752.1 Acoustic Devices ; 913.3 Quality Assurance and Control
原始文献类型Article in Press
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/427457
专题信息科学与技术学院
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_曹文翰组
通讯作者Zhang, Xiaodan; Cao, Wenhan; Huang, Zhongjie
作者单位
1.Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
3.Xian Polytech Univ, Sch Elect & Informat, Xian 710048, Peoples R China
4.COMAC Shanghai Aircraft Mfg Co Ltd, Ctr Composites, Shanghai 201620, Peoples R China
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Li, Shaopeng,Tian, Jiangtao,Li, Ke,et al. Intelligent Song Recognition via a Hollow-Microstructure-Based, Ultrasensitive Artificial Eardrum[J]. ADVANCED SCIENCE,2024,11(42).
APA Li, Shaopeng.,Tian, Jiangtao.,Li, Ke.,Xu, Kemeng.,Zhang, Jiaqi.,...&Huang, Zhongjie.(2024).Intelligent Song Recognition via a Hollow-Microstructure-Based, Ultrasensitive Artificial Eardrum.ADVANCED SCIENCE,11(42).
MLA Li, Shaopeng,et al."Intelligent Song Recognition via a Hollow-Microstructure-Based, Ultrasensitive Artificial Eardrum".ADVANCED SCIENCE 11.42(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Shaopeng]的文章
[Tian, Jiangtao]的文章
[Li, Ke]的文章
百度学术
百度学术中相似的文章
[Li, Shaopeng]的文章
[Tian, Jiangtao]的文章
[Li, Ke]的文章
必应学术
必应学术中相似的文章
[Li, Shaopeng]的文章
[Tian, Jiangtao]的文章
[Li, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。