ShanghaiTech University Knowledge Management System
Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via 3D Anomaly Synthesis and A Self-Supervised Learning Network | |
2024-06-22 | |
会议录名称 | 2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) |
ISSN | 1063-6919 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52733.2024.02096 |
摘要 | Recently, 3D anomaly detection, a crucial problem in-volving fine-grained geometry discrimination, is getting more attention. However, the lack of abundant real 3D anomaly data limits the scalability of current models. To enable scalable anomaly data collection, we propose a 3D anomaly synthesis pipeline to adapt existing large-scale 3D models for 3D anomaly detection. Specifically, we construct a synthetic dataset, i.e., Anomaly-ShapeNet, based on ShapeNet. Anomaly-ShapeNet consists of 1600 point cloud samples under 40 categories, which provides a rich and varied collection of data, enabling efficient training and enhancing adaptability to industrial scenarios. Meanwhile, to enable scalable representation learning for 3D anomaly localization, we propose a self-supervised method, i.e., It-erative Mask Reconstruction Network (IMRNet). During training, we propose a geometry-aware sample module to preserve potentially anomalous local regions during point cloud down-sampling. Then, we randomly mask out point patches and sent the visible patches to a trans-former for reconstruction-based self-supervision. During testing, the point cloud repeatedly goes through the Mask Reconstruction Network, with each iteration's output be-coming the next input. By merging and contrasting the final reconstructed point cloud with the initial input, our method successfully locates anomalies. Experiments show that IMRNet outperforms previous state-of-the-art methods, achieving 66.1% in I-AUC on our Anomaly-ShapeNet dataset and 72.5% in I-AUC on ReaI3D-AD dataset. Our benchmark will be released at https://github.com/Chopper-233/Anomaly-ShapeNet. |
会议地点 | Seattle, WA, USA |
会议日期 | 16-22 June 2024 |
URL | 查看原文 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/424437 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_高盛华组 创意与艺术学院_PI研究组(P)_武颖娜组 |
作者单位 | 1.ShanghaiTech University 2.University of Michigan, Ann Arbor |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Wenqiao Li,Xiaohao Xu,Yao Gu,et al. Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via 3D Anomaly Synthesis and A Self-Supervised Learning Network[C],2024. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wenqiao Li]的文章 |
[Xiaohao Xu]的文章 |
[Yao Gu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wenqiao Li]的文章 |
[Xiaohao Xu]的文章 |
[Yao Gu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wenqiao Li]的文章 |
[Xiaohao Xu]的文章 |
[Yao Gu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。