Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via 3D Anomaly Synthesis and A Self-Supervised Learning Network
2024-06-22
会议录名称2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
ISSN1063-6919
发表状态已发表
DOI10.1109/CVPR52733.2024.02096
摘要Recently, 3D anomaly detection, a crucial problem in-volving fine-grained geometry discrimination, is getting more attention. However, the lack of abundant real 3D anomaly data limits the scalability of current models. To enable scalable anomaly data collection, we propose a 3D anomaly synthesis pipeline to adapt existing large-scale 3D models for 3D anomaly detection. Specifically, we construct a synthetic dataset, i.e., Anomaly-ShapeNet, based on ShapeNet. Anomaly-ShapeNet consists of 1600 point cloud samples under 40 categories, which provides a rich and varied collection of data, enabling efficient training and enhancing adaptability to industrial scenarios. Meanwhile, to enable scalable representation learning for 3D anomaly localization, we propose a self-supervised method, i.e., It-erative Mask Reconstruction Network (IMRNet). During training, we propose a geometry-aware sample module to preserve potentially anomalous local regions during point cloud down-sampling. Then, we randomly mask out point patches and sent the visible patches to a trans-former for reconstruction-based self-supervision. During testing, the point cloud repeatedly goes through the Mask Reconstruction Network, with each iteration's output be-coming the next input. By merging and contrasting the final reconstructed point cloud with the initial input, our method successfully locates anomalies. Experiments show that IMRNet outperforms previous state-of-the-art methods, achieving 66.1% in I-AUC on our Anomaly-ShapeNet dataset and 72.5% in I-AUC on ReaI3D-AD dataset. Our benchmark will be released at https://github.com/Chopper-233/Anomaly-ShapeNet.
会议地点Seattle, WA, USA
会议日期16-22 June 2024
URL查看原文
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/424437
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_高盛华组
创意与艺术学院_PI研究组(P)_武颖娜组
作者单位
1.ShanghaiTech University
2.University of Michigan, Ann Arbor
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Wenqiao Li,Xiaohao Xu,Yao Gu,et al. Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via 3D Anomaly Synthesis and A Self-Supervised Learning Network[C],2024.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wenqiao Li]的文章
[Xiaohao Xu]的文章
[Yao Gu]的文章
百度学术
百度学术中相似的文章
[Wenqiao Li]的文章
[Xiaohao Xu]的文章
[Yao Gu]的文章
必应学术
必应学术中相似的文章
[Wenqiao Li]的文章
[Xiaohao Xu]的文章
[Yao Gu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR52733.2024.02096.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。