A multimodal machine learning model for the stratification of breast cancer risk
2024-12-01
发表期刊NATURE BIOMEDICAL ENGINEERING (IF:26.8[JCR-2023],29.2[5-Year])
ISSN2157-846X
EISSN2157-846X
发表状态已发表
DOI10.1038/s41551-024-01302-7
摘要

["Machine learning models for the diagnosis of breast cancer can facilitate the prediction of cancer risk and subsequent patient management among other clinical tasks. For the models to impact clinical practice, they ought to follow standard workflows, help interpret mammography and ultrasound data, evaluate clinical contextual information, handle incomplete data and be validated in prospective settings. Here we report the development and testing of a multimodal model leveraging mammography and ultrasound modules for the stratification of breast cancer risk based on clinical metadata, mammography and trimodal ultrasound (19,360 images of 5,216 breasts) from 5,025 patients with surgically confirmed pathology across medical centres and scanner manufacturers. Compared with the performance of experienced radiologists, the model performed similarly at classifying tumours as benign or malignant and was superior at pathology-level differential diagnosis. With a prospectively collected dataset of 191 breasts from 187 patients, the overall accuracies of the multimodal model and of preliminary pathologist-level assessments of biopsied breast specimens were similar (90.1% vs 92.7%, respectively). Multimodal models may assist diagnosis in oncology.","A multimodal model for the stratification of breast cancer risk based on clinical metadata, mammography and trimodal ultrasound images performed as well as or better than radiologists at tumour classification and at differential diagnosis."]

关键词Contrastive Learning Lung cancer Mammography Oncology Pathology Risk management Ultrasonic imaging Ultrasonic testing Breast Cancer Breast cancer risk Cancer risk Clinical practices Clinical tasks Machine learning models Multi-modal Multimodal models Patient management Work-flows
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China[82371993]
WOS研究方向Engineering
WOS类目Engineering, Biomedical
WOS记录号WOS:001370380400001
出版者NATURE PORTFOLIO
EI入藏号20245017516306
EI主题词Diseases
EI分类号102.1 ; 102.1.1 ; 102.1.2 ; 102.1.2.1 ; 1101.2 ; 746 Imaging Techniques ; 753.3 Ultrasonic Applications ; 914.1 Accidents and Accident Prevention
原始文献类型Article in Press
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/421486
专题生物医学工程学院
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_PI研究组_钱学骏组
生物医学工程学院_硕士生
生物医学工程学院_硕士生
生物医学工程学院_硕士生
共同第一作者Jing Pei; Chunguang Han
作者单位
1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, Shanghai 201210, China
2.State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 246 Shanghai 201210, China
3.Shanghai United Imaging Intelligence Co., Ltd., Shanghai, Shanghai 200232, China
4.Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 249 230022, China
5.Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 251 230022, China
6.Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, 253 China
7.Department of Ultrasound, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 255 210006, China
8.Department of Ultrasound, Xuancheng People’s Hospital, Xuancheng, Anhui 242000, China
9.Department of Breast Surgery, Fuyang Cancer Hospital, Fuyang, Anhui 236000, China
10.Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai 200032, China
11.Department of Radiology, The Second Affiliated Hospital of Zhejiang University, Zhejiang 310000, China
12.Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Heifei, Anhui 230022, 261 China
13.Shanghai Clinical Research and Trial Center, Shanghai, Shanghai 201210, China
第一作者单位生物医学工程学院;  上海科技大学
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Xuejun Qian,Jing Pei,Chunguang Han,et al. A multimodal machine learning model for the stratification of breast cancer risk[J]. NATURE BIOMEDICAL ENGINEERING,2024.
APA Xuejun Qian.,Jing Pei.,Chunguang Han.,Zhiying Liang.,Gaosong Zhang.,...&Dinggang Shen.(2024).A multimodal machine learning model for the stratification of breast cancer risk.NATURE BIOMEDICAL ENGINEERING.
MLA Xuejun Qian,et al."A multimodal machine learning model for the stratification of breast cancer risk".NATURE BIOMEDICAL ENGINEERING (2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xuejun Qian]的文章
[Jing Pei]的文章
[Chunguang Han]的文章
百度学术
百度学术中相似的文章
[Xuejun Qian]的文章
[Jing Pei]的文章
[Chunguang Han]的文章
必应学术
必应学术中相似的文章
[Xuejun Qian]的文章
[Jing Pei]的文章
[Chunguang Han]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。