Distinguish the Indistinguishable: Spatial Personalized Transformer for Traffic Flow Forecast
2024
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14962 LNCS
页码390-404
发表状态已发表
DOI10.1007/978-981-97-7235-3_26
摘要

In recent years, Spatial-Temporal Graph Neural Networks (STGNNs) has faced increasing challenges in traffic flow forecasting. The main issue lies in the significant indistinguishability among traffic nodes, where highly similar inputs correspond to completely different outputs, posing a major challenge in achieving accurate model fitting. To address this, some researchers have abandoned the graph network structure and introduced spatial embedding to enhance the differentiation between nodes, showing that graph networks are not well-suited for spatial-temporal prediction problems. However, STGNNs are not beyond redemption and the key is indistinguishability. In this paper, we tackle the indistinguishability problem from three main stages of STGNNs: (1) data preprocessing, (2) temporal representation, and (3) graph learning. We discover that the standard attention-based graph learning in (3) and the widely adopted normalization operation in (1) both may worsen data indistinguishability from spatial dimension. Additionally, in temporal dimension, the lack of representation capability also limits the model’s ability to differentiate these indistinguishable data patterns. Base on these findings, we propose the Spatial Personalized Transformer (SPFormer) with optimizations from the three stages mentioned above. Through extensive experiments, our method achieves state-of-the-art performance across multiple publicly available datasets. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

关键词Data flow graphs Graph embeddings Network theory (graphs) Accurate modeling Graph networks Graph neural networks Indistinguishability Spatial temporals Spatial-temporal forecast Temporal graphs Traffic flow forecast Traffic flow forecasting Traffic nodes
会议名称8th Asia-Pacific Web and Web-Age Information Management Joint International Conference on Web and Big Data, APWeb-WAIM 2024
出版地152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
会议地点Jinhua, China
会议日期August 30, 2024 - September 1, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Telecommunications
WOS记录号WOS:001307700300026
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20243717010030
EI主题词Graph neural networks
EISSN1611-3349
EI分类号1101 ; 1201.8
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/421451
专题信息科学与技术学院_PI研究组_张海鹏组
通讯作者Cao, Shaosheng; Zhang, Haipeng
作者单位
1.DiDi Chuxing, Beijing, China;
2.ShanghaiTech University, Shanghai, China
通讯作者单位上海科技大学
推荐引用方式
GB/T 7714
Chen, Ao,Cao, Shaosheng,Zhang, Haipeng. Distinguish the Indistinguishable: Spatial Personalized Transformer for Traffic Flow Forecast[C]. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE:Springer Science and Business Media Deutschland GmbH,2024:390-404.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Ao]的文章
[Cao, Shaosheng]的文章
[Zhang, Haipeng]的文章
百度学术
百度学术中相似的文章
[Chen, Ao]的文章
[Cao, Shaosheng]的文章
[Zhang, Haipeng]的文章
必应学术
必应学术中相似的文章
[Chen, Ao]的文章
[Cao, Shaosheng]的文章
[Zhang, Haipeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。