消息
×
loading..
Efficient Nonconvex Optimization for Two-way Sparse Reduced-Rank Regression
2024-07-12
会议录名称2024 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT)
ISSN2157-8095
页码753-758
发表状态已发表
DOI10.1109/ISIT57864.2024.10619140
摘要

We consider the problem of two-way sparse reduced-rank regression (TSRRR). The purpose of TSRRR is to estimate the coefficient matrix in the multiple response linear regression model where the coefficient matrix is simultaneously low-rank and two-way sparse (i.e., row and column sparse). In this work, we formulate TSRRR as a nonconvex optimization problem and propose an efficient and scalable algorithm dubbed as ScaledGDT (Scaled Gradient Descent with hard Thresholding). To demonstrate the efficiency and scalability of our proposed algorithm, we prove the linear convergence rate which is independent of the condition number of the coefficient matrix obtained by the iterates of ScaledGDT, to the region within statistical error up to the optimal solution. Also, the statistical error rate obtained by ScaledGDT is verified to be near optimal compared to minimax rate, which confirms its satisfactory estimation accuracy. Sim-ulations validate the competitive performance of our proposed algorithm compared with existing methods.

会议录编者/会议主办者The Institute of Electrical and Electronics Engineers Information Theory Society
关键词Error statistics Logistic regression Matrix algebra Optimization algorithms Polynomial regression Coefficient matrix Gradient-descent Hard thresholding Linear regression modelling Multiple response Nonconvex optimization Nonconvex-optimization Reduced rank regression Statistical errors Two ways
会议名称2024 IEEE International Symposium on Information Theory, ISIT 2024
会议地点Athens, Greece
会议日期7-12 July 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20243616989214
EI主题词Multiple linear regression
EI分类号1106.1 ; 1201.1 ; 1201.7 ; 1202 ; 1202.2
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/414265
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_赵子平组
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Cheng Cheng,Ziping Zhao. Efficient Nonconvex Optimization for Two-way Sparse Reduced-Rank Regression[C]//The Institute of Electrical and Electronics Engineers Information Theory Society:Institute of Electrical and Electronics Engineers Inc.,2024:753-758.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cheng Cheng]的文章
[Ziping Zhao]的文章
百度学术
百度学术中相似的文章
[Cheng Cheng]的文章
[Ziping Zhao]的文章
必应学术
必应学术中相似的文章
[Cheng Cheng]的文章
[Ziping Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。