| |||||||
ShanghaiTech University Knowledge Management System
Efficient Nonconvex Optimization for Two-way Sparse Reduced-Rank Regression | |
2024-07-12 | |
会议录名称 | 2024 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT)
![]() |
ISSN | 2157-8095 |
页码 | 753-758 |
发表状态 | 已发表 |
DOI | 10.1109/ISIT57864.2024.10619140 |
摘要 | We consider the problem of two-way sparse reduced-rank regression (TSRRR). The purpose of TSRRR is to estimate the coefficient matrix in the multiple response linear regression model where the coefficient matrix is simultaneously low-rank and two-way sparse (i.e., row and column sparse). In this work, we formulate TSRRR as a nonconvex optimization problem and propose an efficient and scalable algorithm dubbed as ScaledGDT (Scaled Gradient Descent with hard Thresholding). To demonstrate the efficiency and scalability of our proposed algorithm, we prove the linear convergence rate which is independent of the condition number of the coefficient matrix obtained by the iterates of ScaledGDT, to the region within statistical error up to the optimal solution. Also, the statistical error rate obtained by ScaledGDT is verified to be near optimal compared to minimax rate, which confirms its satisfactory estimation accuracy. Sim-ulations validate the competitive performance of our proposed algorithm compared with existing methods. |
会议录编者/会议主办者 | The Institute of Electrical and Electronics Engineers Information Theory Society |
关键词 | Error statistics Logistic regression Matrix algebra Optimization algorithms Polynomial regression Coefficient matrix Gradient-descent Hard thresholding Linear regression modelling Multiple response Nonconvex optimization Nonconvex-optimization Reduced rank regression Statistical errors Two ways |
会议名称 | 2024 IEEE International Symposium on Information Theory, ISIT 2024 |
会议地点 | Athens, Greece |
会议日期 | 7-12 July 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20243616989214 |
EI主题词 | Multiple linear regression |
EI分类号 | 1106.1 ; 1201.1 ; 1201.7 ; 1202 ; 1202.2 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/414265 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_赵子平组 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Cheng Cheng,Ziping Zhao. Efficient Nonconvex Optimization for Two-way Sparse Reduced-Rank Regression[C]//The Institute of Electrical and Electronics Engineers Information Theory Society:Institute of Electrical and Electronics Engineers Inc.,2024:753-758. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Cheng Cheng]的文章 |
[Ziping Zhao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Cheng Cheng]的文章 |
[Ziping Zhao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Cheng Cheng]的文章 |
[Ziping Zhao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。