Cas-DiffCom: Cascaded Diffusion Model for Infant Longitudinal Super-Resolution 3D Medical Image Completion
2024-05-30
会议录名称2024 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
ISSN1945-7928
发表状态已发表
DOI10.1109/ISBI56570.2024.10635663
摘要Early infancy is a rapid and dynamic neurodevelopmental period for behavior and neurocognition. Longitudinal magnetic resonance imaging (MRI) is an effective tool to investigate such a crucial stage by capturing the developmental trajectories of the brain structures. However, longitudinal MRI acquisition always meets a serious data-missing problem due to participant dropout and failed scans, making longitudinal infant brain atlas construction and developmental trajectory delineation quite challenging. Thanks to the development of an AI-based generative model, neuroimage completion has become a powerful technique to retain as much available data as possible. However, current image completion methods usually suffer from inconsistency within each individual subject in the time dimension, compromising the overall quality. To solve this problem, our paper proposed a two-stage cascaded diffusion model, Cas-DiffCom, for dense and longitudinal 3D infant brain MRI completion and superresolution. We applied our proposed method to the Baby Connectome Project (BCP) dataset. The experiment results validate that Cas-DiffCom achieves both individual consistency and high fidelity in longitudinal infant brain image completion. We further applied the generated infant brain images to two downstream tasks, brain tissue segmentation and developmental trajectory delineation, to declare its task-oriented potential in the neuroscience field.
会议录编者/会议主办者AI2D Center ; et al. ; Therapanacea ; Thermo Fisher Scientific ; United Imaging Intelligence ; Verasonics
关键词Brain mapping Diffusion tensor imaging Image segmentation 3D medical image Brain images Brain structure Diffusion model Effective tool Image completion Infant development Medical imaging completion Neurocognition Superresolution
会议名称21st IEEE International Symposium on Biomedical Imaging, ISBI 2024
会议地点Athens, Greece
会议日期27-30 May 2024
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20243717024220
EI主题词Magnetic resonance imaging
EISSN1945-8452
EI分类号101.1 ; 1106.3.1 ; 709 Electrical Engineering, General ; 746 Imaging Techniques
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/414234
专题信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_公共科研平台_智能医学科研平台
生物医学工程学院_PI研究组_王乾组
生物医学工程学院_PI研究组_张寒组
生物医学工程学院_硕士生
作者单位
1.School of Biomedical Engineering & State Key Laboratory of Advanced Materials and Devices, ShanghaiTech University, Shanghai, China
2.Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China
3.Shanghai Clinical Research and Trial Center, Shanghai, China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Lianghu Guo,Tianli Tao,Xinyi Cai,et al. Cas-DiffCom: Cascaded Diffusion Model for Infant Longitudinal Super-Resolution 3D Medical Image Completion[C]//AI2D Center, et al., Therapanacea, Thermo Fisher Scientific, United Imaging Intelligence, Verasonics:IEEE Computer Society,2024.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lianghu Guo]的文章
[Tianli Tao]的文章
[Xinyi Cai]的文章
百度学术
百度学术中相似的文章
[Lianghu Guo]的文章
[Tianli Tao]的文章
[Xinyi Cai]的文章
必应学术
必应学术中相似的文章
[Lianghu Guo]的文章
[Tianli Tao]的文章
[Xinyi Cai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ISBI56570.2024.10635663.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。