消息
×
loading..
LiDARCapV2: 3D human pose estimation with human–object interaction from LiDAR point clouds
2024-12
发表期刊PATTERN RECOGNITION (IF:7.5[JCR-2023],7.6[5-Year])
ISSN0031-3203
EISSN1873-5142
卷号156
发表状态已发表
DOI10.1016/j.patcog.2024.110848
摘要

Human–object interactions in open environments are common in the real world. Estimating 3D human pose from data where objects occlude the human is a challenging task in biometrics. However, existing LiDAR-based human motion capture datasets lack occlusion scenarios between humans and objects. To overcome this limitation, we propose LiDARHuman51M, a new human–object interaction dataset captured by LiDAR in long-range outdoor scene. It includes human motion labels acquired by an IMU system and synchronous RGB images. Additionally, we present an occlusion-aware method, LiDARCapV2, for capturing human motion from LiDAR point clouds under human–object interaction settings. Our key insight is to overcome object interference in human feature extraction by introducing a module called AgNoise-Segment. A noise augmentation strategy introduced in the AgNoise-Segment module alleviates the dependency of the segmentation accuracy on the effectiveness of 3D human pose estimations. Furthermore, we propose a skeleton extraction module that integrates features learned from the AgNoise-Segment module and predicts the skeleton locations. Quantitative and qualitative experiments demonstrate that LiDARCapV2 can capture high-quality 3D human motion under human–object interaction settings. Experiments on the KITTI and Waymo datasets demonstrate that our method can be generalized to real-world open scenarios. © 2024 Elsevier Ltd

关键词Extraction Optical radar 3D human pose estimation Human motion capture Human motions Human pose Human-object interaction LiDAR point cloud Open environment Outdoor scenes Point-clouds Real-world
URL查看原文
收录类别SCI ; EI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001291017100001
出版者Elsevier Ltd
EI入藏号20243216829325
EI主题词Musculoskeletal system
EI分类号461.3 Biomechanics, Bionics and Biomimetics ; 716.2 Radar Systems and Equipment ; 741.3 Optical Devices and Systems ; 802.3 Chemical Operations
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/411220
专题信息科学与技术学院_PI研究组_许岚组
通讯作者Wang, Cheng
作者单位
1.Xiamen Univ, Sch Informat, Fujian Key Lab Sensing & Comp Smart City, Xiamen, Peoples R China
2.ShanghaiTech Univ, Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Jingyi,Mao, Qihong,Shen, Siqi,et al. LiDARCapV2: 3D human pose estimation with human–object interaction from LiDAR point clouds[J]. PATTERN RECOGNITION,2024,156.
APA Zhang, Jingyi,Mao, Qihong,Shen, Siqi,Xu, Lan,&Wang, Cheng.(2024).LiDARCapV2: 3D human pose estimation with human–object interaction from LiDAR point clouds.PATTERN RECOGNITION,156.
MLA Zhang, Jingyi,et al."LiDARCapV2: 3D human pose estimation with human–object interaction from LiDAR point clouds".PATTERN RECOGNITION 156(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Jingyi]的文章
[Mao, Qihong]的文章
[Shen, Siqi]的文章
百度学术
百度学术中相似的文章
[Zhang, Jingyi]的文章
[Mao, Qihong]的文章
[Shen, Siqi]的文章
必应学术
必应学术中相似的文章
[Zhang, Jingyi]的文章
[Mao, Qihong]的文章
[Shen, Siqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。