| |||||||
ShanghaiTech University Knowledge Management System
LiDARCapV2: 3D human pose estimation with human–object interaction from LiDAR point clouds | |
2024-12 | |
发表期刊 | PATTERN RECOGNITION (IF:7.5[JCR-2023],7.6[5-Year]) |
ISSN | 0031-3203 |
EISSN | 1873-5142 |
卷号 | 156 |
发表状态 | 已发表 |
DOI | 10.1016/j.patcog.2024.110848 |
摘要 | Human–object interactions in open environments are common in the real world. Estimating 3D human pose from data where objects occlude the human is a challenging task in biometrics. However, existing LiDAR-based human motion capture datasets lack occlusion scenarios between humans and objects. To overcome this limitation, we propose LiDARHuman51M, a new human–object interaction dataset captured by LiDAR in long-range outdoor scene. It includes human motion labels acquired by an IMU system and synchronous RGB images. Additionally, we present an occlusion-aware method, LiDARCapV2, for capturing human motion from LiDAR point clouds under human–object interaction settings. Our key insight is to overcome object interference in human feature extraction by introducing a module called AgNoise-Segment. A noise augmentation strategy introduced in the AgNoise-Segment module alleviates the dependency of the segmentation accuracy on the effectiveness of 3D human pose estimations. Furthermore, we propose a skeleton extraction module that integrates features learned from the AgNoise-Segment module and predicts the skeleton locations. Quantitative and qualitative experiments demonstrate that LiDARCapV2 can capture high-quality 3D human motion under human–object interaction settings. Experiments on the KITTI and Waymo datasets demonstrate that our method can be generalized to real-world open scenarios. © 2024 Elsevier Ltd |
关键词 | Extraction Optical radar 3D human pose estimation Human motion capture Human motions Human pose Human-object interaction LiDAR point cloud Open environment Outdoor scenes Point-clouds Real-world |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001291017100001 |
出版者 | Elsevier Ltd |
EI入藏号 | 20243216829325 |
EI主题词 | Musculoskeletal system |
EI分类号 | 461.3 Biomechanics, Bionics and Biomimetics ; 716.2 Radar Systems and Equipment ; 741.3 Optical Devices and Systems ; 802.3 Chemical Operations |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/411220 |
专题 | 信息科学与技术学院_PI研究组_许岚组 |
通讯作者 | Wang, Cheng |
作者单位 | 1.Xiamen Univ, Sch Informat, Fujian Key Lab Sensing & Comp Smart City, Xiamen, Peoples R China 2.ShanghaiTech Univ, Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Jingyi,Mao, Qihong,Shen, Siqi,et al. LiDARCapV2: 3D human pose estimation with human–object interaction from LiDAR point clouds[J]. PATTERN RECOGNITION,2024,156. |
APA | Zhang, Jingyi,Mao, Qihong,Shen, Siqi,Xu, Lan,&Wang, Cheng.(2024).LiDARCapV2: 3D human pose estimation with human–object interaction from LiDAR point clouds.PATTERN RECOGNITION,156. |
MLA | Zhang, Jingyi,et al."LiDARCapV2: 3D human pose estimation with human–object interaction from LiDAR point clouds".PATTERN RECOGNITION 156(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。