消息
×
loading..
Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning
2019-05-15
发表期刊SCIENTIFIC REPORTS (IF:3.8[JCR-2023],4.3[5-Year])
ISSN2045-2322
卷号9
发表状态已发表
DOI10.1038/s41598-019-43432-y
摘要The laminar organization of the cerebral cortex is a fundamental characteristic of the brain, with essential implications for cortical function. Due to the rapidly growing amount of high-resolution brain imaging data, a great demand arises for automated and flexible methods for discriminating the laminar texture of the cortex. Here, we propose a combined approach of unsupervised and supervised machine learning to discriminate the hierarchical cortical laminar organization in high-resolution 2-photon microscopic neural image data of mouse brain without observer bias, that is, without the prerequisite of manually labeled training data. For local cortical foci, we modify an unsupervised clustering approach to identify and represent the laminar cortical structure. Subsequently, supervised machine learning is applied to transfer the resulting layer labels across different locations and image data, to ensure the existence of a consistent layer label system. By using neurobiologically meaningful features, the discrimination results are shown to be consistent with the layer classification of the classical Brodmann scheme, and provide additional insight into the structure of the cerebral cortex and its hierarchical organization. Thus, our work paves a new way for studying the anatomical organization of the cerebral cortex, and potentially its functional organization.
收录类别SCI ; SCIE
语种英语
资助项目NSFC[31671104]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000468025300020
出版者NATURE PUBLISHING GROUP
WOS关键词LAMINAR ORGANIZATION ; PYRAMIDAL NEURONS ; REPRESENTATION ; CIRCUITS ; REVEALS ; NETWORK ; COLUMN ; BRAIN ; ATLAS ; MRI
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/40843
专题生命科学与技术学院_PI研究组_管吉松组
通讯作者Hilgetag, Claus C.
作者单位
1.Univ Med Ctr Hamburg Eppendorf, Inst Computat Neurosci, D-20246 Hamburg, Germany
2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
3.Tsinghua Univ, Sch Life Sci, Beijing 100086, Peoples R China
4.Shanghai Res Ctr Brain Sci & Brain Inspired Intel, Zhangjiang Lab, Inst Brain Intelligence Technol, Shanghai 200031, Peoples R China
5.Jacobs Univ Bremen, Focus Area Hlth, D-28759 Bremen, Germany
6.Boston Univ, Dept Hlth Sci, Boston, MA 02215 USA
推荐引用方式
GB/T 7714
Li, Dong,Zavaglia, Melissa,Wang, Guangyu,et al. Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning[J]. SCIENTIFIC REPORTS,2019,9.
APA Li, Dong.,Zavaglia, Melissa.,Wang, Guangyu.,Xie, Hong.,Hu, Yi.,...&Hilgetag, Claus C..(2019).Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning.SCIENTIFIC REPORTS,9.
MLA Li, Dong,et al."Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning".SCIENTIFIC REPORTS 9(2019).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Dong]的文章
[Zavaglia, Melissa]的文章
[Wang, Guangyu]的文章
百度学术
百度学术中相似的文章
[Li, Dong]的文章
[Zavaglia, Melissa]的文章
[Wang, Guangyu]的文章
必应学术
必应学术中相似的文章
[Li, Dong]的文章
[Zavaglia, Melissa]的文章
[Wang, Guangyu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1038@s41598-019-43432-y.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。