ShanghaiTech University Knowledge Management System
Data-Driven Optimal Feedback Laws via Kernel Mean Embeddings | |
2024-07-23 | |
状态 | 已发表 |
摘要 | This paper proposes a fully data-driven approach for optimal control of nonlinear control-affine systems represented by a stochastic diffusion. The focus is on the scenario where both the nonlinear dynamics and stage cost functions are unknown, , while only control penalty function and constraints are provided. Leveraging the theory of reproducing kernel Hilbert spaces, we introduce novel kernel mean embeddings (KMEs) to identify the Markov transition operators associated with controlled diffusion processes. . The KME learning approach seamlessly integrates with modern convex operator-theoretic Hamilton-Jacobi-Bellman recursions. Thus, unlike traditional dynamic programming methods, our approach exploits the “kernel trick” to break the curse of dimensionality. We demonstrate the effectiveness of our method through numerical examples, highlighting its ability to solve a large class of nonlinear optimal control problems. |
关键词 | kernel mean embeddings optimal control machine learning data-driven control kernel methods |
DOI | arXiv:2407.16407 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:91043855 |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Electrical& Electronic ; Mathematics ; Statistics& Probability |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/408321 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_Boris Houska组 |
作者单位 | 1.TU Munchen, Chair Informat oriented Control, Munchen, Germany 2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Bevanda, Petar,Hoischen, Nicolas,Sosnowski, Stefan,et al. Data-Driven Optimal Feedback Laws via Kernel Mean Embeddings. 2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。