Data-Driven Optimal Feedback Laws via Kernel Mean Embeddings
2024-07-23
状态已发表
摘要

This paper proposes a fully data-driven approach for optimal control of nonlinear control-affine systems represented by a stochastic diffusion. The focus is on the scenario where both the nonlinear dynamics and stage cost functions are unknown, , while only control penalty function and constraints are provided. Leveraging the theory of reproducing kernel Hilbert spaces, we introduce novel kernel mean embeddings (KMEs) to identify the Markov transition operators associated with controlled diffusion processes. . The KME learning approach seamlessly integrates with modern convex operator-theoretic Hamilton-Jacobi-Bellman recursions. Thus, unlike traditional dynamic programming methods, our approach exploits the “kernel trick” to break the curse of dimensionality. We demonstrate the effectiveness of our method through numerical examples, highlighting its ability to solve a large class of nonlinear optimal control problems.

关键词kernel mean embeddings optimal control machine learning data-driven control kernel methods
DOIarXiv:2407.16407
相关网址查看原文
出处Arxiv
WOS记录号PPRN:91043855
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Electrical& Electronic ; Mathematics ; Statistics& Probability
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/408321
专题信息科学与技术学院
信息科学与技术学院_PI研究组_Boris Houska组
作者单位
1.TU Munchen, Chair Informat oriented Control, Munchen, Germany
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Bevanda, Petar,Hoischen, Nicolas,Sosnowski, Stefan,et al. Data-Driven Optimal Feedback Laws via Kernel Mean Embeddings. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Bevanda, Petar]的文章
[Hoischen, Nicolas]的文章
[Sosnowski, Stefan]的文章
百度学术
百度学术中相似的文章
[Bevanda, Petar]的文章
[Hoischen, Nicolas]的文章
[Sosnowski, Stefan]的文章
必应学术
必应学术中相似的文章
[Bevanda, Petar]的文章
[Hoischen, Nicolas]的文章
[Sosnowski, Stefan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。