Accelerating Quadratic Transform and WMMSE
2024
发表期刊IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
ISSN0733-8716
EISSN1558-0008
卷号PP期号:99页码:1-1
发表状态已发表
DOI10.1109/JSAC.2024.3431523
摘要Fractional programming (FP) arises in various communications and signal processing problems because several key quantities in these fields are fractionally structured, e.g., the Cramér-Rao bound, the Fisher information, and the signal-to-interference-plus-noise ratio (SINR). A recently proposed method called the quadratic transform has been applied to the FP problems extensively. The main contributions of the present paper are two-fold. First, we investigate how fast the quadratic transform converges. To the best of our knowledge, this is the first work that analyzes the convergence rate for the quadratic transform as well as its special case the weighted minimum mean square error (WMMSE) algorithm. Second, we accelerate the existing quadratic transform via a novel use of Nesterov’s extrapolation scheme [1]. Specifically, by generalizing the minorization-maximization (MM) approach in [2], we establish a subtle connection between the quadratic transform and the gradient projection, thereby further incorporating the gradient extrapolation into the quadratic transform to make it converge more rapidly. Moreover, the paper showcases the practical use of the accelerated quadratic transform with two frontier wireless applications: integrated sensing and communications (ISAC) and massive multiple-input multiple-output (MIMO). IEEE
关键词Acceleration Array processing Extrapolation Fisher information matrix MIMO systems Signal interference Signal to noise ratio Array signal processing Convergence Convergence rates Fractional programming Means square errors Minimum mean squares Signal processing algorithms Symmetric matrices Weighted minimum mean square error
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20243016760687
EI主题词Mean square error
EI分类号716.1 Information Theory and Signal Processing ; 921.6 Numerical Methods ; 922 Statistical Methods ; 922.2 Mathematical Statistics
原始文献类型Article in Press
来源库IEEE
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/407206
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_赵子平组
作者单位
1.School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China;
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China;
3.Electrical and Computer Engineering Department, Aarhus Universrity, Aarhus, Denmark
推荐引用方式
GB/T 7714
Shen, Kaiming,Zhao, Ziping,Chen, Yannan,et al. Accelerating Quadratic Transform and WMMSE[J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,2024,PP(99):1-1.
APA Shen, Kaiming,Zhao, Ziping,Chen, Yannan,Zhang, Zepeng,&Cheng, Hei Victor.(2024).Accelerating Quadratic Transform and WMMSE.IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,PP(99),1-1.
MLA Shen, Kaiming,et al."Accelerating Quadratic Transform and WMMSE".IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS PP.99(2024):1-1.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shen, Kaiming]的文章
[Zhao, Ziping]的文章
[Chen, Yannan]的文章
百度学术
百度学术中相似的文章
[Shen, Kaiming]的文章
[Zhao, Ziping]的文章
[Chen, Yannan]的文章
必应学术
必应学术中相似的文章
[Shen, Kaiming]的文章
[Zhao, Ziping]的文章
[Chen, Yannan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@JSAC.2024.3431523.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。