CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets
2024-07-19
发表期刊ACM TRANSACTIONS ON GRAPHICS (IF:7.8[JCR-2023],9.5[5-Year])
ISSN0730-0301
EISSN1557-7368
卷号43期号:4
发表状态已发表
DOI10.1145/3658146
摘要

In the realm of digital creativity, our potential to craft intricate 3D worlds from imagination is often hampered by the limitations of existing digital tools, which demand extensive expertise and efforts. To narrow this disparity, we introduce CLAY, a 3D geometry and material generator designed to effortlessly transform human imagination into intricate 3D digital structures. CLAY supports classic text or image inputs as well as 3D-aware controls from diverse primitives (multi-view images, voxels, bounding boxes, point clouds, implicit representations, etc). At its core is a large-scale generative model composed of a multi-resolution Variational Autoencoder (VAE) and a minimalistic latent Diffusion Transformer (DiT), to extract rich 3D priors directly from a diverse range of 3D geometries. Specifically, it adopts neural fields to represent continuous and complete surfaces and uses a geometry generative module with pure transformer blocks in latent space. We present a progressive training scheme to train CLAY on an ultra large 3D model dataset obtained through a carefully designed processing pipeline, resulting in a 3D native geometry generator with 1.5 billion parameters. For appearance generation, CLAY sets out to produce physically-based rendering (PBR) textures by employing a multi-view material diffusion model that can generate 2K resolution textures with diffuse, roughness, and metallic modalities. We demonstrate using CLAY for a range of controllable 3D asset creations, from sketchy conceptual designs to production ready assets with intricate details. Even first time users can easily use CLAY to bring their vivid 3D imaginations to life, unleashing unlimited creativity. © 2024 Copyright held by the owner/author(s).

关键词3D modeling Diffusion Digital devices Geometry Interactive computer graphics Large datasets Rendering (computer graphics) Three dimensional computer graphics 3d asset generation 3D geometry Diffusion transformer Digital tools Generative model High quality Large-scale modeling Large-scales Multi modal control Physically based rendering
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Key R&D Program of China[2022YFF0902301] ; NSFC programs[
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001289270900087
出版者Association for Computing Machinery
EI入藏号20243016756662
EI主题词Textures
EI分类号723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 921 Mathematics
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/407194
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_许岚组
共同第一作者Wang, Ziyu
通讯作者Xu, Lan; Yu, Jingyi
作者单位
1.Shanghai Tech University, Shanghai, China and Deemos Technology Co., Ltd., Shanghai, China;
2.ShanghaiTech University and Deemos Technology Co., Ltd., Shanghai, China;
3.ShanghaiTech University, Shanghai, China;
4.Huazhong University of Science and Technology, Wuhan, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zhang, Longwen,Wang, Ziyu,Zhang, Qixuan,et al. CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets[J]. ACM TRANSACTIONS ON GRAPHICS,2024,43(4).
APA Zhang, Longwen.,Wang, Ziyu.,Zhang, Qixuan.,Qiu, Qiwei.,Pang, Anqi.,...&Yu, Jingyi.(2024).CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets.ACM TRANSACTIONS ON GRAPHICS,43(4).
MLA Zhang, Longwen,et al."CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets".ACM TRANSACTIONS ON GRAPHICS 43.4(2024).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Longwen]的文章
[Wang, Ziyu]的文章
[Zhang, Qixuan]的文章
百度学术
百度学术中相似的文章
[Zhang, Longwen]的文章
[Wang, Ziyu]的文章
[Zhang, Qixuan]的文章
必应学术
必应学术中相似的文章
[Zhang, Longwen]的文章
[Wang, Ziyu]的文章
[Zhang, Qixuan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3658146.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。