消息
×
loading..
SAM-PS: Zero-shot Parking-slot Detection based on Large Visual Model
2024-06-05
会议录名称2024 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV)
ISSN1931-0587
页码1594-1600
发表状态已发表
DOI10.1109/IV55156.2024.10588736
摘要

Large visual models have recently demonstrated their promising performance on zero-shot transfer. However, so far, none of the existing methods explicitly possess the ability to perform zero-shot transfer on parking-slot detection, which results in current deep-learning based methods relying on training datasets, and methods based on traditional computer vision exhibiting poor robustness. In this paper, we propose a large visual model-based parking-slot detection method, which utilizes a large visual model (segment anything) to segment an around-view image and infer parking-slots by analyzing the relationship of marking-points in masks. In addition, we classify real-world parking-slots into two categories, line-based and area-based. The proposed method employs a two-stage approach which has a manually designed post-processing step without training. Multiple experiments have been carried out on public benchmarks, and our method demonstrates the capability for zero-shot transfer. The code will be released at https://github.com/Zhai0123/SAM-PS.

会议录编者/会议主办者IEEE Intelligent Transportation Systems Society (ITSS)
关键词Computer vision Image segmentation Zero-shot learning 'current Detection methods Learning-based methods Model segment Model-based OPC Performance Traditional computers Training dataset Training methods Visual model
会议名称35th IEEE Intelligent Vehicles Symposium, IV 2024
会议地点Jeju Island, Korea, Republic of
会议日期2-5 June 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20243116784834
EI主题词Deep learning
EISSN2642-7214
EI分类号461.4 Ergonomics and Human Factors Engineering ; 723.5 Computer Applications ; 741.2 Vision
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/404256
专题信息科学与技术学院
信息科学与技术学院_硕士生
作者单位
1.Research Center for Intelligent Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
3.Shanghai Innovation Center for Processor Technologies(SHIC)
4.China North Artificial Intelligence & Innovation Research Institute
5.Collective Intelligence & Collaboration Laboratory (CIC)
6.School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
第一作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Heng Zhai,Jilin Mei,Liang Chen,et al. SAM-PS: Zero-shot Parking-slot Detection based on Large Visual Model[C]//IEEE Intelligent Transportation Systems Society (ITSS):Institute of Electrical and Electronics Engineers Inc.,2024:1594-1600.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Heng Zhai]的文章
[Jilin Mei]的文章
[Liang Chen]的文章
百度学术
百度学术中相似的文章
[Heng Zhai]的文章
[Jilin Mei]的文章
[Liang Chen]的文章
必应学术
必应学术中相似的文章
[Heng Zhai]的文章
[Jilin Mei]的文章
[Liang Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。