消息
×
loading..
Fusing Code Searchers
2024-07-01
发表期刊IEEE TRANSACTIONS ON SOFTWARE ENGINEERING (IF:6.5[JCR-2023],7.0[5-Year])
ISSN2326-3881
EISSN1939-3520
卷号50期号:7页码:1852-1866
发表状态已发表
DOI10.1109/TSE.2024.3403042
摘要

Code search, which consists in retrieving relevant code snippets from a codebase based on a given query, provides developers with useful references during software development. Over the years, techniques alternatively adopting different mechanisms to compute the relevance score between a query and a code snippet have been proposed to advance the state of the art in this domain, including those relying on information retrieval, supervised learning, and pre-training. Despite that, the usefulness of existing techniques is still compromised since they cannot effectively handle all the diversified queries and code in practice. To tackle this challenge, we present Dancer, a data fusion based code searcher. Our intuition (also the basic hypothesis of this study) is that existing techniques may complement each other because of the intrinsic differences in their working mechanisms. We have validated this hypothesis via an exploratory study. Based on that, we propose to fuse the results generated by different code search techniques so that the advantage of each standalone technique can be fully leveraged. Specifically, we treat each technique as a retrieval system and leverage well-known data fusion approaches to aggregate the results from different systems. We evaluate six existing code search techniques on two large-scale datasets, and exploit eight classic data fusion approaches to incorporate their results. Our experiments show that the best fusion approach is able to outperform the standalone techniques by 35% - 550% and 65% - 825% in terms of MRR (mean reciprocal rank) on the two datasets, respectively.

关键词Codes Information retrieval data fusion Information retrieval data fusion
URL查看原文
收录类别SCI ; EI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Software Engineering ; Engineering, Electrical & Electronic
WOS记录号WOS:001272193600004
出版者IEEE COMPUTER SOC
EI入藏号20242216161607
EI主题词Semantics
EI分类号723 Computer Software, Data Handling and Applications ; 723.1 Computer Programming ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 903.3 Information Retrieval and Use
原始文献类型Journal article (JA)
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/404254
专题信息科学与技术学院_PI研究组_宋富组
作者单位
1.National University of Defense Technology, Changsha, China
2.ShanghaiTech University, Shanghai, China
3.Huazhong University of Science and Technology, Wuhan, China
4.Southern University of Science and Technology, Shenzhen, China
5.Monash University, Melbourne, Clayton, Australia
6.University of Luxembourg, Luxembourg
推荐引用方式
GB/T 7714
Shangwen Wang,Mingyang Geng,Bo Lin,et al. Fusing Code Searchers[J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,2024,50(7):1852-1866.
APA Shangwen Wang.,Mingyang Geng.,Bo Lin.,Zhensu Sun.,Ming Wen.,...&Xiaoguang Mao.(2024).Fusing Code Searchers.IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,50(7),1852-1866.
MLA Shangwen Wang,et al."Fusing Code Searchers".IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 50.7(2024):1852-1866.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shangwen Wang]的文章
[Mingyang Geng]的文章
[Bo Lin]的文章
百度学术
百度学术中相似的文章
[Shangwen Wang]的文章
[Mingyang Geng]的文章
[Bo Lin]的文章
必应学术
必应学术中相似的文章
[Shangwen Wang]的文章
[Mingyang Geng]的文章
[Bo Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。