Proximal Gradient-Based Unfolding for Massive Random Access in IoT Networks
2024-10
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1558-2248
EISSN1558-2248
卷号23期号:10页码:14530-14545
发表状态已发表
DOI10.1109/TWC.2024.3416375
摘要Grant-free random access is an effective technology for enabling low-overhead and low-latency massive access, where joint activity detection and channel estimation (JADCE) is a critical issue. Although existing compressed sensing algorithms can be applied for JADCE, they usually fail to simultaneously harvest the following properties: effective sparsity inducing, fast convergence, robust to different pilot sequences, and adaptive to time-varying networks. To this end, we propose an unfolding framework for JADCE based on the proximal gradient method. Specifically, we formulate the JADCE problem as a group-row-sparse matrix recovery problem and leverage a minimax concave penalty rather than the widely-used ℓ1-norm to induce sparsity. We then develop a proximal gradient-based unfolding neural network that parameterizes the algorithmic iterations. To improve convergence rate, we incorporate momentum into the unfolding neural network, and prove the accelerated convergence theoretically. Based on the convergence analysis, we further develop an adaptive-tuning algorithm, which adjusts its parameters to different signal-to-noise ratio settings. Simulations show that the proposed unfolding neural network achieves better recovery performance, convergence rate, and adaptivity than current baselines.
关键词Channel estimation Computer system recovery Gradient methods Internet of things Neural networks Signal reconstruction Signal to noise ratio Activity detection Compressed-Sensing Convergence Gradient's methods Joint activity Joint activity detection and channel estimation Massive random access Neural-networks Proximal gradient unfolding Random access Signal processing algorithms Unfoldings
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242816661188
EI主题词Compressed sensing
EI分类号716.1 Information Theory and Signal Processing ; 722.3 Data Communication, Equipment and Techniques ; 723 Computer Software, Data Handling and Applications ; 921.6 Numerical Methods
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/395946
专题信息科学与技术学院
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
3.Faculty of Math and CS, Weizmann Institute of Science, Rehovot, Israel
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yinan Zou,Yong Zhou,Xu Chen,et al. Proximal Gradient-Based Unfolding for Massive Random Access in IoT Networks[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2024,23(10):14530-14545.
APA Yinan Zou,Yong Zhou,Xu Chen,&Yonina C. Eldar.(2024).Proximal Gradient-Based Unfolding for Massive Random Access in IoT Networks.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,23(10),14530-14545.
MLA Yinan Zou,et al."Proximal Gradient-Based Unfolding for Massive Random Access in IoT Networks".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 23.10(2024):14530-14545.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yinan Zou]的文章
[Yong Zhou]的文章
[Xu Chen]的文章
百度学术
百度学术中相似的文章
[Yinan Zou]的文章
[Yong Zhou]的文章
[Xu Chen]的文章
必应学术
必应学术中相似的文章
[Yinan Zou]的文章
[Yong Zhou]的文章
[Xu Chen]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TWC.2024.3416375.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。