ShanghaiTech University Knowledge Management System
Proximal Gradient-Based Unfolding for Massive Random Access in IoT Networks | |
2024-10 | |
发表期刊 | IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year]) |
ISSN | 1558-2248 |
EISSN | 1558-2248 |
卷号 | 23期号:10页码:14530-14545 |
发表状态 | 已发表 |
DOI | 10.1109/TWC.2024.3416375 |
摘要 | Grant-free random access is an effective technology for enabling low-overhead and low-latency massive access, where joint activity detection and channel estimation (JADCE) is a critical issue. Although existing compressed sensing algorithms can be applied for JADCE, they usually fail to simultaneously harvest the following properties: effective sparsity inducing, fast convergence, robust to different pilot sequences, and adaptive to time-varying networks. To this end, we propose an unfolding framework for JADCE based on the proximal gradient method. Specifically, we formulate the JADCE problem as a group-row-sparse matrix recovery problem and leverage a minimax concave penalty rather than the widely-used ℓ1-norm to induce sparsity. We then develop a proximal gradient-based unfolding neural network that parameterizes the algorithmic iterations. To improve convergence rate, we incorporate momentum into the unfolding neural network, and prove the accelerated convergence theoretically. Based on the convergence analysis, we further develop an adaptive-tuning algorithm, which adjusts its parameters to different signal-to-noise ratio settings. Simulations show that the proposed unfolding neural network achieves better recovery performance, convergence rate, and adaptivity than current baselines. |
关键词 | Channel estimation Computer system recovery Gradient methods Internet of things Neural networks Signal reconstruction Signal to noise ratio Activity detection Compressed-Sensing Convergence Gradient's methods Joint activity Joint activity detection and channel estimation Massive random access Neural-networks Proximal gradient unfolding Random access Signal processing algorithms Unfoldings |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20242816661188 |
EI主题词 | Compressed sensing |
EI分类号 | 716.1 Information Theory and Signal Processing ; 722.3 Data Communication, Equipment and Techniques ; 723 Computer Software, Data Handling and Applications ; 921.6 Numerical Methods |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/395946 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China 3.Faculty of Math and CS, Weizmann Institute of Science, Rehovot, Israel |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yinan Zou,Yong Zhou,Xu Chen,et al. Proximal Gradient-Based Unfolding for Massive Random Access in IoT Networks[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2024,23(10):14530-14545. |
APA | Yinan Zou,Yong Zhou,Xu Chen,&Yonina C. Eldar.(2024).Proximal Gradient-Based Unfolding for Massive Random Access in IoT Networks.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,23(10),14530-14545. |
MLA | Yinan Zou,et al."Proximal Gradient-Based Unfolding for Massive Random Access in IoT Networks".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 23.10(2024):14530-14545. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yinan Zou]的文章 |
[Yong Zhou]的文章 |
[Xu Chen]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yinan Zou]的文章 |
[Yong Zhou]的文章 |
[Xu Chen]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yinan Zou]的文章 |
[Yong Zhou]的文章 |
[Xu Chen]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。