ShanghaiTech University Knowledge Management System
The 2024 magnonics roadmap | |
Flebus, Benedetta1; Grundler, Dirk2,3; Rana, Bivas4; Otani, Yoshichika5,6; Barsukov, Igor7; Barman, Anjan8; Gubbiotti, Gianluca9; Landeros, Pedro10; Akerman, Johan11; Ebels, Ursula12; Pirro, Philipp13; Demidov, Vladislav E.14; Schultheiss, Katrin15; Csaba, Gyorgy16; Wang, Qi17; Ciubotaru, Florin18; Nikonov, Dmitri E.19; Che, Ping20; Hertel, Riccardo21; Ono, Teruo22; Afanasiev, Dmytro23; Mentink, Johan23; Rasing, Theo23; Hillebrands, Burkard13; Kusminskiy, Silvia Viola24,25; Zhang, Wei26; Du, Chunhui Rita27; Finco, Aurore28; van der Sar, Toeno29; Luo, Yunqiu Kelly30,31; Shiota, Yoichi32; Sklenar, Joseph33; Yu, Tao17; Rao, Jinwei34
| |
2024-09-11 | |
发表期刊 | JOURNAL OF PHYSICS-CONDENSED MATTER |
ISSN | 0953-8984 |
EISSN | 1361-648X |
卷号 | 36期号:36 |
发表状态 | 已发表 |
DOI | 10.1088/1361-648X/ad399c |
摘要 | Magnonics is a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes. |
关键词 | magnonics road map spin wave microwave neuromorphic ferromagnet antiferromagnet |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Physics |
WOS类目 | Physics, Condensed Matter |
WOS记录号 | WOS:001250242400001 |
出版者 | IOP Publishing Ltd |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/395903 |
专题 | 物质科学与技术学院_特聘教授组_陆卫组 |
通讯作者 | Flebus, Benedetta; Grundler, Dirk |
作者单位 | 1.Boston Coll, Dept Phys, 140 Commonwealth Ave, Chestnut Hill, MA 02467 USA 2.Ecole Polytech Fed Lausanne EPFL, Inst Mat IMX, Lab Nanoscale Magnet Mat & Magnon, CH-1015 Lausanne, Switzerland 3.Ecole Polytech Fed Lausanne, Inst Elect & Micro Engn IEM, CH-1015 Lausanne, Switzerland 4.Adam Mickiewicz Univ, Inst Spintron & Quantum Informat ISQI, Fac Phys, Poznan, Poland 5.RIKEN, Ctr Emergent Matter Sci, Wako, Japan 6.Univ Tokyo, Inst Solid State Phys ISSP, Kashiwa, Japan 7.Univ Calif Riverside, Dept Phys & Astron, Riverside, CA USA 8.SN Bose Natl Ctr Basic Sci, Sect 3, Kolkata, India 9.CNR Ist Officina Mat, Perugia, Italy 10.Univ Tecn Feder Santa Maria, Ave Espana 1680, Valparaiso, Chile 11.Univ Gothenburg, Dept Phys, Gothenburg, Sweden 12.Univ Grenoble Alpes, CEA, CNRS, Grenoble INP,SPINTEC, F-38000 Grenoble, France 13.RPTU Kaiserslautern Landau, Fachbereich Phys & Landesforschungszentrum OPTIMAS, Kaiserslautern, Germany 14.Univ Munster, Inst Appl Phys, D-48149 Munster, Germany 15.Helmholtz Zent Dresden Rossendorf, Dresden, Germany 16.Pazmany Peter Catholic Univ, Budapest, Hungary 17.Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China 18.Imec, B-3001 Leuven, Belgium 19.Intel Corp, Components Res, Hillsboro, OR 97124 USA 20.Univ Paris Saclay, Lab Albert Fert, CNRS, Thales, F-91767 Palaiseau, France 21.Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, F-67000 Strasbourg, France 22.Kyoto Univ, Inst Chem Res, Ctr Spintron Res Network, Uji, Japan 23.Radboud Univ Nijmegen, Inst Mol & Mat, Nijmegen, Netherlands 24.Rhein Westfal TH Aachen, Aachen, Germany 25.Max Planck Inst Phys Light, Erlangen, Germany 26.Univ N Carolina, Chapel Hill, NC 27599 USA 27.Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA 28.Univ Montpellier, Lab Charles Coulomb, CNRS, F-34095 Montpellier, France 29.Delft Univ Technol, Kavli Inst Nanosci, Dept Quantum Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands 30.Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA 31.Kavli Inst Cornell, Ithaca, NY 14853 USA 32.Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan 33.Wayne State Univ, Detroit, MI USA 34.ShanghaiTech Univ, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Flebus, Benedetta,Grundler, Dirk,Rana, Bivas,et al. The 2024 magnonics roadmap[J]. JOURNAL OF PHYSICS-CONDENSED MATTER,2024,36(36). |
APA | Flebus, Benedetta.,Grundler, Dirk.,Rana, Bivas.,Otani, Yoshichika.,Barsukov, Igor.,...&Rao, Jinwei.(2024).The 2024 magnonics roadmap.JOURNAL OF PHYSICS-CONDENSED MATTER,36(36). |
MLA | Flebus, Benedetta,et al."The 2024 magnonics roadmap".JOURNAL OF PHYSICS-CONDENSED MATTER 36.36(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。