ShanghaiTech University Knowledge Management System
For the Misgendered Chinese in Gender Bias Research: Multi-Task Learning with Knowledge Distillation for Pinyin Name-Gender Prediction | |
2024 | |
会议录名称 | PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024 |
摘要 | Achieving gender equality is a pivotal factor in realizing the UN's Global Goals for Sustainable Development. Gender bias studies work towards this and rely on name-based gender inference tools to assign individual gender labels when gender information is unavailable. However, these tools often inaccurately predict gender for Chinese Pinyin names, leading to potential bias in such studies. With the growing participation of Chinese in international activities, this situation is becoming more severe. Specifically, current tools focus on pronunciation (Pinyin) information, neglecting the fact that the latent connections between Pinyin and Chinese characters (Hanzi) behind convey critical information. As a first effort, we formulate the Pinyin name-gender guessing problem and design a Multi-Task Learning Network assisted by Knowledge Distillation that enables the Pinyin embeddings in the model to possess semantic features of Chinese characters and to learn gender information from Chinese character names. Our open-sourced method surpasses commercial name-gender guessing tools by 9.70% to 20.08% relatively, and also outperforms the state-of-the-art algorithms. |
会议名称 | 33rd International Joint Conference on Artificial Intelligence (IJCAI) |
出版地 | ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY |
会议地点 | null,Jeju,SOUTH KOREA |
会议日期 | AUG 03-09, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Mathematics |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Mathematics, Applied |
WOS记录号 | WOS:001347142807042 |
出版者 | IJCAI-INT JOINT CONF ARTIF INTELL |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/387310 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_张海鹏组 |
通讯作者 | Zhang, Haipeng |
作者单位 | ShanghaiTech Univ, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Du, Xiaocong,Zhang, Haipeng. For the Misgendered Chinese in Gender Bias Research: Multi-Task Learning with Knowledge Distillation for Pinyin Name-Gender Prediction[C]. ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY:IJCAI-INT JOINT CONF ARTIF INTELL,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Du, Xiaocong]的文章 |
[Zhang, Haipeng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Du, Xiaocong]的文章 |
[Zhang, Haipeng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Du, Xiaocong]的文章 |
[Zhang, Haipeng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。