For the Misgendered Chinese in Gender Bias Research: Multi-Task Learning with Knowledge Distillation for Pinyin Name-Gender Prediction
2024
会议录名称PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024
摘要Achieving gender equality is a pivotal factor in realizing the UN's Global Goals for Sustainable Development. Gender bias studies work towards this and rely on name-based gender inference tools to assign individual gender labels when gender information is unavailable. However, these tools often inaccurately predict gender for Chinese Pinyin names, leading to potential bias in such studies. With the growing participation of Chinese in international activities, this situation is becoming more severe. Specifically, current tools focus on pronunciation (Pinyin) information, neglecting the fact that the latent connections between Pinyin and Chinese characters (Hanzi) behind convey critical information. As a first effort, we formulate the Pinyin name-gender guessing problem and design a Multi-Task Learning Network assisted by Knowledge Distillation that enables the Pinyin embeddings in the model to possess semantic features of Chinese characters and to learn gender information from Chinese character names. Our open-sourced method surpasses commercial name-gender guessing tools by 9.70% to 20.08% relatively, and also outperforms the state-of-the-art algorithms.
会议名称33rd International Joint Conference on Artificial Intelligence (IJCAI)
出版地ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY
会议地点null,Jeju,SOUTH KOREA
会议日期AUG 03-09, 2024
URL查看原文
收录类别CPCI-S
语种英语
WOS研究方向Computer Science ; Mathematics
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Mathematics, Applied
WOS记录号WOS:001347142807042
出版者IJCAI-INT JOINT CONF ARTIF INTELL
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/387310
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_张海鹏组
通讯作者Zhang, Haipeng
作者单位
ShanghaiTech Univ, Shanghai, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Du, Xiaocong,Zhang, Haipeng. For the Misgendered Chinese in Gender Bias Research: Multi-Task Learning with Knowledge Distillation for Pinyin Name-Gender Prediction[C]. ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY:IJCAI-INT JOINT CONF ARTIF INTELL,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Du, Xiaocong]的文章
[Zhang, Haipeng]的文章
百度学术
百度学术中相似的文章
[Du, Xiaocong]的文章
[Zhang, Haipeng]的文章
必应学术
必应学术中相似的文章
[Du, Xiaocong]的文章
[Zhang, Haipeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。