消息
×
loading..
Does Confidence Calibration Help Conformal Prediction?
2024-02-06
状态已发表
摘要

Conformal prediction, as an emerging uncertainty qualification technique, constructs prediction sets that are guaranteed to contain the true label with high probability. Previous works usually employ temperature scaling to calibrate the classifier, assuming that confidence calibration can benefit conformal prediction. In this work, we first show that post -hoc calibration methods surprisingly lead to larger prediction sets with improved calibration, while over -confidence with small temperatures benefits the conformal prediction performance instead. Theoretically, we prove that high confidence reduces the probability of appending a new class in the prediction set. Inspired by the analysis, we propose a novel method, Conformal Temperature Scaling (ConfTS), which rectifies the objective through the gap between the threshold and the non -conformity score of the ground -truth label. In this way, the new objective of ConfTS will optimize the temperature value toward an optimal set that satisfies the marginal coverage. Experiments demonstrate that our method can effectively improve widely -used conformal prediction methods.

DOIarXiv:2402.04344
相关网址查看原文
出处Arxiv
WOS记录号PPRN:87561956
WOS类目Computer Science, Artificial Intelligence
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381350
专题信息科学与技术学院
信息科学与技术学院_硕士生
通讯作者Wei, Hongxin
作者单位
1.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
3.Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore City, Singapore
推荐引用方式
GB/T 7714
Xi, Huajun,Huang, Jianguo,Feng, Lei,et al. Does Confidence Calibration Help Conformal Prediction?. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xi, Huajun]的文章
[Huang, Jianguo]的文章
[Feng, Lei]的文章
百度学术
百度学术中相似的文章
[Xi, Huajun]的文章
[Huang, Jianguo]的文章
[Feng, Lei]的文章
必应学术
必应学术中相似的文章
[Xi, Huajun]的文章
[Huang, Jianguo]的文章
[Feng, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。