Sparse discovery of differential equations based on multi-fidelity Gaussian process
2024-01-22
状态已发表
摘要

Sparse identification of differential equations aims to compute the analytic expressions from the observed data explicitly. However, there exist two primary challenges. Firstly, it exhibits sensitivity to the noise in the observed data, particularly for the derivatives computations. Secondly, existing literature predominantly concentrates on single-fidelity (SF) data, which imposes limitations on its applicability due to the computational cost. In this paper, we present two novel approaches to address these problems from the view of uncertainty quantification. We construct a surrogate model employing the Gaussian process regression (GPR) to mitigate the effect of noise in the observed data, quantify its uncertainty, and ultimately recover the equations accurately. Subsequently, we exploit the multi-fidelity Gaussian processes (MFGP) to address scenarios involving multi-fidelity (MF), sparse, and noisy observed data. We demonstrate the robustness and effectiveness of our methodologies through several numerical experiments.

关键词Sparse discovery Gaussian process regression Multi-fidelity data
DOIarXiv:2401.11825
相关网址查看原文
出处Arxiv
WOS记录号PPRN:87272206
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Mathematics
资助项目National Natural Science Foundation of China (NSFC)[
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381331
专题信息科学与技术学院
信息科学与技术学院_硕士生
通讯作者Qiu, Yue
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
3.Chongqing Univ, Key Lab Nonlinear Anal & its Applicat, Minist Educ, Chongqing 401331, Peoples R China
推荐引用方式
GB/T 7714
Meng, Yuhuang,Qiu, Yue. Sparse discovery of differential equations based on multi-fidelity Gaussian process. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Meng, Yuhuang]的文章
[Qiu, Yue]的文章
百度学术
百度学术中相似的文章
[Meng, Yuhuang]的文章
[Qiu, Yue]的文章
必应学术
必应学术中相似的文章
[Meng, Yuhuang]的文章
[Qiu, Yue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。