| |||||||
ShanghaiTech University Knowledge Management System
GENNDTI: Drug-target interaction prediction using graph neural network enhanced by router nodes | |
2024 | |
发表期刊 | IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS (IF:6.7[JCR-2023],7.1[5-Year]) |
ISSN | 2168-2208 |
EISSN | 2168-2208 |
卷号 | PP期号:99页码:1-12 |
发表状态 | 已发表 |
DOI | 10.1109/JBHI.2024.3402529 |
摘要 | Identifying drug-target interactions (DTI) is crucial in drug discovery and repurposing, and in silico techniques for DTI predictions are becoming increasingly important for reducing time and cost. Most interaction-based DTI models rely on the guilt-by-association principle that “similar drugs can interact with similar targets”. However, such methods utilize precomputed similarity matrices and cannot dynamically discover intricate correlations. Meanwhile, some methods enrich DTI networks by incorporating additional networks like DDI and PPI networks, enriching biological signals to enhance DTI prediction. While these approaches have achieved promising performance in DTI prediction, such coarse-grained association data do not explain the specific biological mechanisms underlying DTIs. In this work, we propose GENNDTI, which constructs biologically meaningful routers to represent and integrate the salient properties of drugs and targets. Similar drugs or targets connect to more same router nodes, capturing property sharing. In addition, heterogeneous encoders are designed to distinguish different types of interactions, modeling both real and constructed interactions. This strategy enriches graph topology and enhances prediction efficiency as well. We evaluate the proposed method on benchmark datasets, demonstrating comparative performance over existing methods. We specifically analyze router nodes to validate their efficacy in improving predictions and providing biological explanations. The proposed method is implemented in Python and the source code can be found at https://github.com/JieZheng-ShanghaiTech/GENNDTI |
关键词 | DTI Interpretability Graph enhancement Prior Knowledge Graph neural network |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20242216162198 |
EI主题词 | Magnetic resonance imaging |
EI分类号 | 461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 461.9 Biology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.4 Artificial Intelligence ; 746 Imaging Techniques ; 802.2 Chemical Reactions ; 921.1 Algebra ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory |
原始文献类型 | Article in Press |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/378324 |
专题 | 信息科学与技术学院 免疫化学研究所 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_郑杰组 免疫化学研究所_PI研究组_白芳组 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Ainnocence, Shanghai, China 3.Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China 4.Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Beiyuan Yang,Yule Liu,Junfeng Wu,et al. GENNDTI: Drug-target interaction prediction using graph neural network enhanced by router nodes[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2024,PP(99):1-12. |
APA | Beiyuan Yang,Yule Liu,Junfeng Wu,Fang Bai,Mingyue Zheng,&Jie Zheng.(2024).GENNDTI: Drug-target interaction prediction using graph neural network enhanced by router nodes.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,PP(99),1-12. |
MLA | Beiyuan Yang,et al."GENNDTI: Drug-target interaction prediction using graph neural network enhanced by router nodes".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS PP.99(2024):1-12. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。