消息
×
loading..
GENNDTI: Drug-target interaction prediction using graph neural network enhanced by router nodes
2024
发表期刊IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS (IF:6.7[JCR-2023],7.1[5-Year])
ISSN2168-2208
EISSN2168-2208
卷号PP期号:99页码:1-12
发表状态已发表
DOI10.1109/JBHI.2024.3402529
摘要Identifying drug-target interactions (DTI) is crucial in drug discovery and repurposing, and in silico techniques for DTI predictions are becoming increasingly important for reducing time and cost. Most interaction-based DTI models rely on the guilt-by-association principle that “similar drugs can interact with similar targets”. However, such methods utilize precomputed similarity matrices and cannot dynamically discover intricate correlations. Meanwhile, some methods enrich DTI networks by incorporating additional networks like DDI and PPI networks, enriching biological signals to enhance DTI prediction. While these approaches have achieved promising performance in DTI prediction, such coarse-grained association data do not explain the specific biological mechanisms underlying DTIs. In this work, we propose GENNDTI, which constructs biologically meaningful routers to represent and integrate the salient properties of drugs and targets. Similar drugs or targets connect to more same router nodes, capturing property sharing. In addition, heterogeneous encoders are designed to distinguish different types of interactions, modeling both real and constructed interactions. This strategy enriches graph topology and enhances prediction efficiency as well. We evaluate the proposed method on benchmark datasets, demonstrating comparative performance over existing methods. We specifically analyze router nodes to validate their efficacy in improving predictions and providing biological explanations. The proposed method is implemented in Python and the source code can be found at https://github.com/JieZheng-ShanghaiTech/GENNDTI
关键词DTI Interpretability Graph enhancement Prior Knowledge Graph neural network
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242216162198
EI主题词Magnetic resonance imaging
EI分类号461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 461.9 Biology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.4 Artificial Intelligence ; 746 Imaging Techniques ; 802.2 Chemical Reactions ; 921.1 Algebra ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/378324
专题信息科学与技术学院
免疫化学研究所
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_PI研究组_郑杰组
免疫化学研究所_PI研究组_白芳组
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Ainnocence, Shanghai, China
3.Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
4.Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Beiyuan Yang,Yule Liu,Junfeng Wu,et al. GENNDTI: Drug-target interaction prediction using graph neural network enhanced by router nodes[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2024,PP(99):1-12.
APA Beiyuan Yang,Yule Liu,Junfeng Wu,Fang Bai,Mingyue Zheng,&Jie Zheng.(2024).GENNDTI: Drug-target interaction prediction using graph neural network enhanced by router nodes.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,PP(99),1-12.
MLA Beiyuan Yang,et al."GENNDTI: Drug-target interaction prediction using graph neural network enhanced by router nodes".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS PP.99(2024):1-12.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Beiyuan Yang]的文章
[Yule Liu]的文章
[Junfeng Wu]的文章
百度学术
百度学术中相似的文章
[Beiyuan Yang]的文章
[Yule Liu]的文章
[Junfeng Wu]的文章
必应学术
必应学术中相似的文章
[Beiyuan Yang]的文章
[Yule Liu]的文章
[Junfeng Wu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。