ShanghaiTech University Knowledge Management System
An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning | |
2023-06 | |
发表期刊 | JOURNAL OF MANUFACTURING PROCESSES (IF:6.1[JCR-2023],6.2[5-Year]) |
ISSN | 1526-6125 |
EISSN | 2212-4616 |
卷号 | 120期号:30 June 2024页码:1130-1140 |
发表状态 | 已发表 |
DOI | 10.1016/j.jmapro.2024.05.001 |
摘要 | Directed Energy Deposition (DED) is crucial in the ongoing industrial revolution, providing a unique ability to fabricate high-quality components with complex shapes. However, the determination of key process parameters, such as scan sequence, laser power, and scanning speed, often relies on offline trial-and-error or heuristic methods. These methods are not only suboptimal but also lack generalizability. A major challenge is the non-uniform temperature distribution during manufacturing, which affects the uniformity of the mechanical properties. To overcome these challenges, we have developed a framework based on Deep Reinforcement Learning (DRL). This framework dynamically adjusts process parameters to achieve an optimal control policy. Additionally, we introduce a cost-effective temperature simulation model of the deposition process. This model is particularly useful for researchers testing the proximal policy optimization algorithm. The experimental results demonstrate that DRL policies substantially improve temperature uniformity in Inconel 718, enhancing hardness variability with improvements of 31.8 % and 27.1 % in horizontal and vertical building directions, respectively. This research marks an important step toward achieving a highly intelligent and automated optimization of process parameters. It also proves to be robust and computationally efficient for future online implementation. © 2024 |
关键词 | Cost effectiveness Deep learning Deposition Heuristic methods Nickel alloys Optimization Vickers hardness Deep reinforcement learning Directed energy Directed energy deposition Energy depositions Policy optimization Process parameters Proximal policy optimization Reinforcement learnings Temperature simulator Vickers hardness measurements |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | CAS Interdisciplinary Innovation Team Project[JCTD- 2020-10] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Manufacturing |
WOS记录号 | WOS:001242384800001 |
出版者 | Elsevier Ltd |
EI入藏号 | 20242016087658 |
EI主题词 | Reinforcement learning |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 548.2 Nickel Alloys ; 723.4 Artificial Intelligence ; 802.3 Chemical Operations ; 911.2 Industrial Economics ; 921.5 Optimization Techniques |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/373010 |
专题 | 创意与艺术学院_PI研究组(P)_武颖娜组 物质科学与技术学院_硕士生 信息科学与技术学院_硕士生 创意与艺术学院_PI研究组(P)_翟梓融组 创意与艺术学院_PI研究组(P)_杨锐组 |
通讯作者 | Zirong,Zhai |
作者单位 | 1.ShanghaiTech University 2.Chinese Academy of Sciences |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Shuai,Shi,Xuewen,Liu,Zhongan,Wang,et al. An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning[J]. JOURNAL OF MANUFACTURING PROCESSES,2023,120(30 June 2024):1130-1140. |
APA | Shuai,Shi.,Xuewen,Liu.,Zhongan,Wang.,Hai,Chang.,Yingna,Wu.,...&Zirong,Zhai.(2023).An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning.JOURNAL OF MANUFACTURING PROCESSES,120(30 June 2024),1130-1140. |
MLA | Shuai,Shi,et al."An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning".JOURNAL OF MANUFACTURING PROCESSES 120.30 June 2024(2023):1130-1140. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。