An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning
2023-06
发表期刊JOURNAL OF MANUFACTURING PROCESSES (IF:6.1[JCR-2023],6.2[5-Year])
ISSN1526-6125
EISSN2212-4616
卷号120期号:30 June 2024页码:1130-1140
发表状态已发表
DOI10.1016/j.jmapro.2024.05.001
摘要Directed Energy Deposition (DED) is crucial in the ongoing industrial revolution, providing a unique ability to fabricate high-quality components with complex shapes. However, the determination of key process parameters, such as scan sequence, laser power, and scanning speed, often relies on offline trial-and-error or heuristic methods. These methods are not only suboptimal but also lack generalizability. A major challenge is the non-uniform temperature distribution during manufacturing, which affects the uniformity of the mechanical properties. To overcome these challenges, we have developed a framework based on Deep Reinforcement Learning (DRL). This framework dynamically adjusts process parameters to achieve an optimal control policy. Additionally, we introduce a cost-effective temperature simulation model of the deposition process. This model is particularly useful for researchers testing the proximal policy optimization algorithm. The experimental results demonstrate that DRL policies substantially improve temperature uniformity in Inconel 718, enhancing hardness variability with improvements of 31.8 % and 27.1 % in horizontal and vertical building directions, respectively. This research marks an important step toward achieving a highly intelligent and automated optimization of process parameters. It also proves to be robust and computationally efficient for future online implementation. © 2024
关键词Cost effectiveness Deep learning Deposition Heuristic methods Nickel alloys Optimization Vickers hardness Deep reinforcement learning Directed energy Directed energy deposition Energy depositions Policy optimization Process parameters Proximal policy optimization Reinforcement learnings Temperature simulator Vickers hardness measurements
URL查看原文
收录类别EI ; SCI
语种英语
资助项目CAS Interdisciplinary Innovation Team Project[JCTD- 2020-10]
WOS研究方向Engineering
WOS类目Engineering, Manufacturing
WOS记录号WOS:001242384800001
出版者Elsevier Ltd
EI入藏号20242016087658
EI主题词Reinforcement learning
EI分类号461.4 Ergonomics and Human Factors Engineering ; 548.2 Nickel Alloys ; 723.4 Artificial Intelligence ; 802.3 Chemical Operations ; 911.2 Industrial Economics ; 921.5 Optimization Techniques
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/373010
专题创意与艺术学院_PI研究组(P)_武颖娜组
物质科学与技术学院_硕士生
信息科学与技术学院_硕士生
创意与艺术学院_PI研究组(P)_翟梓融组
创意与艺术学院_PI研究组(P)_杨锐组
通讯作者Zirong,Zhai
作者单位
1.ShanghaiTech University
2.Chinese Academy of Sciences
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Shuai,Shi,Xuewen,Liu,Zhongan,Wang,et al. An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning[J]. JOURNAL OF MANUFACTURING PROCESSES,2023,120(30 June 2024):1130-1140.
APA Shuai,Shi.,Xuewen,Liu.,Zhongan,Wang.,Hai,Chang.,Yingna,Wu.,...&Zirong,Zhai.(2023).An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning.JOURNAL OF MANUFACTURING PROCESSES,120(30 June 2024),1130-1140.
MLA Shuai,Shi,et al."An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning".JOURNAL OF MANUFACTURING PROCESSES 120.30 June 2024(2023):1130-1140.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shuai,Shi]的文章
[Xuewen,Liu]的文章
[Zhongan,Wang]的文章
百度学术
百度学术中相似的文章
[Shuai,Shi]的文章
[Xuewen,Liu]的文章
[Zhongan,Wang]的文章
必应学术
必应学术中相似的文章
[Shuai,Shi]的文章
[Xuewen,Liu]的文章
[Zhongan,Wang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 1-s2.0-S1526612524004559-main.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。